## Logic 1, WS 2004. Homework 1, given Oct 07, due Oct 14

- 1. Read carefully the first chapter of the script and write a question or a negative comment related to this chapter.
- 2. In the definition given during the lecture for the language of propositional logic as a set, express formally the last statement (" $\mathcal{F}$  is the smallest set which has the above properties").
- 3. Write the grammar (in the sense of formal language theory) which generates the language of propositional logic over the propositional variables A, B, C.
- 4. Prove:

For any propositional formulae 
$$\varphi_1, \varphi_2, \dots, \varphi_n, \psi$$
, if  $\varphi_1 \wedge \varphi_2 \wedge \dots \wedge \varphi_n \models \psi$  then  $(\varphi_1 \wedge \varphi_2 \wedge \dots \wedge \varphi_n) \Rightarrow \psi$  is valid

5. Prove:

For any propositional formulae 
$$\varphi_1, \varphi_2, \dots, \varphi_n, \psi$$
,  $\varphi_1 \wedge \varphi_2 \wedge \dots \wedge \varphi_n \models \psi$  if and only if  $\varphi_1 \wedge \varphi_2 \wedge \dots \wedge \varphi_n \wedge \neg \psi$  is inconsistent.