Unification

Unification algorithm
the heart
of the computation model
of logic programs

Substitution

Finite set of the form

$$
\theta=\left\{v_{1} \mapsto t_{1}, \ldots, v_{n} \mapsto t_{n}\right\}
$$

$$
v_{i}-\mathrm{S}
$$

Distinct variables

$$
t_{i}-\mathrm{S}
$$

Terms with $t_{i} \neq v_{i}$

$$
\begin{gathered}
\text { Binding } \\
v_{i} \mapsto t_{i}
\end{gathered}
$$

Application of Substitution

Substitution

$$
\theta=\left\{v_{1} \mapsto t_{1}, \ldots, v_{n} \mapsto t_{n}\right\}
$$

Applied to an expression E

$$
E \theta
$$

(Instance of E wrt θ)
Simultaneously replacing each occurrence of v_{i} in E with t_{i}

Example (Application)

$$
\begin{gathered}
E=p(x, y, f(a)) \\
\theta=\{x \mapsto b, y \mapsto x\} \\
E \theta=p(b, x, f(a))
\end{gathered}
$$

Note that x not substituted second time

Composition

$$
\begin{gathered}
\theta=\left\{v_{1} \mapsto t_{1}, \ldots, v_{n} \mapsto t_{n}\right\} \\
\sigma=\left\{u_{1} \mapsto s_{1}, \ldots, u_{m} \mapsto s_{m}\right\}
\end{gathered}
$$

Composition $\theta \sigma$

Obtained from the set

$$
\left.\begin{array}{rl}
\left\{\quad v_{1}\right. & \mapsto t_{1} \sigma, \ldots, v_{n} \mapsto t_{n} \sigma \\
u_{1} & \mapsto s_{1}, \ldots, u_{m} \mapsto s_{m}
\end{array}\right\}
$$

By deleting all $u_{i} \mapsto s_{i^{-S}}$ with $u_{i} \in\left\{v_{1}, \ldots, v_{n}\right\}$, all $v_{i} \longmapsto t_{i} \sigma$-S with $v_{i}=t_{i} \sigma$.

$$
\begin{gathered}
\text { Example }(\text { Composition }) \\
\theta=\{x \mapsto f(y), y \mapsto z\} \\
\sigma=\{x \mapsto a, y \mapsto b, z \mapsto y\} \\
\theta \sigma=\{x \mapsto f(b), z \mapsto y\}
\end{gathered}
$$

Empty Substitution

Empty substitution
ε
The substitution is the empty set
For all expressions E

$$
E \varepsilon=E
$$

Properties

$$
\begin{gathered}
\theta \varepsilon=\varepsilon \theta=\theta \\
(E \theta) \sigma=E(\theta \sigma) \\
(\theta \sigma) \lambda=\theta(\sigma \lambda)
\end{gathered}
$$

Example (Properties)

Given

$$
\begin{gathered}
\theta=\{x \mapsto f(y), y \mapsto z\} \\
\sigma=\{x \mapsto a, z \mapsto b\} \\
E=p(x, y, g(z))
\end{gathered}
$$

Then

$$
\begin{gathered}
\theta \sigma=\{x \mapsto f(y), y \mapsto b, z \mapsto b\} \\
E \theta=p(f(y), z, g(z)) \\
(E \theta) \sigma=p(f(y), b, g(b)) \\
E(\theta \sigma)=p(f(y), b, g(b))
\end{gathered}
$$

Renaming Substitution

$$
\theta=\left\{x_{1} \mapsto y_{1}, \ldots, x_{n} \mapsto y_{n}\right\}
$$

is a renaming substitution iff
y_{i}-s are distinct variables.

Renaming an Expression
V - the set of variables of the expression E

$$
\theta=\left\{x_{1} \mapsto y_{1}, \ldots, x_{n} \mapsto y_{n}\right\}
$$

is a renaming substitution for E iff
θ is a renaming substitution and

$$
\left\{x_{1}, \ldots, x_{n}\right\} \subseteq V
$$

$\left(V \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right) \cap\left\{y_{1}, \ldots, y_{n}\right\}=\emptyset$

Variants

Expression E
and
expression F
are variants
iff
there exist substitutions θ and σ such that

$$
\begin{gathered}
E \theta=F \\
\text { and } \\
F \sigma=E
\end{gathered}
$$

Variants and Renaming

E and F are variants
iff

there exist renaming substitutions θ and σ such that

$$
\begin{gathered}
E \theta=F \\
\text { and } \\
F \sigma=E
\end{gathered}
$$

More General

A substitution θ
is more general
than a substitution σ
iff
there exists a substitution λ
such that

$$
\sigma=\theta \lambda
$$

Example (More General)

$\theta=\{x \mapsto y, u \mapsto f(y, z)\}$
is more general than

$$
\sigma=\{x \mapsto z, y \mapsto z, u \mapsto f(z, z)\}
$$

because

$$
\sigma=\theta \lambda
$$

$$
\text { where } \lambda=\{y \mapsto z\}
$$

Unifier

Substitution θ

is a unifier
of expressions E and F
iff

$$
E \theta=F \theta
$$

Example (Unifier)

$$
\theta=\{x \mapsto f(b), y \mapsto b, z \mapsto u\}
$$

is a unifier of

$$
\begin{gathered}
E=f(x, b, g(z)) \text { and } F=f(f(y), y, g(u)): \\
E \theta=f(f(b), b, g(u)) \\
F \theta=f(f(b), b, g(u))
\end{gathered}
$$

Unifier (Contd.)

σ is a unifier

of a set of expression pairs

$$
\left\{\left\langle E_{1}, F_{1}\right\rangle, \ldots,\left\langle E_{n}, F_{n}\right\rangle\right\}
$$

iff
σ is a unifier of
E_{i} and F_{i} for each $1 \leq i \leq n$,
i.e., ff
$E_{1} \sigma=F_{1} \sigma$

$$
E_{n} \sigma=F_{n} \sigma
$$

Most General Unifier (mgu)

A unifier θ of E and F
is most general iff
θ is more general than any other unifier of E and F

Example (mgu)

$$
E=f(x, b, g(z)) F=f(f(y), y, g(u))
$$

Unifiers of E and F
(infinitely many):

$$
\begin{gathered}
\theta_{1}=\{x \mapsto f(b), y \mapsto b, z \mapsto u\} \\
\theta_{2}=\{x \mapsto f(b), y \mapsto b, u \mapsto z\} \\
\theta_{3}=\{x \mapsto f(b), y \mapsto b, z \mapsto a, u \mapsto a\} \\
\theta_{4}=\{x \mapsto f(b), y \mapsto b, z \mapsto b, u \mapsto b\} \\
\theta_{5}=\{x \mapsto f(b), y \mapsto b, z \mapsto u, w \mapsto d\}
\end{gathered}
$$

But

Example (mgu, Contd.)

$$
\begin{gathered}
\text { mgu-s of } E \text { and } F: \\
\theta_{1}=\{x \mapsto f(b), y \mapsto b, z \mapsto u\} \\
\theta_{2}=\{x \mapsto f(b), y \mapsto b, u \mapsto z\}
\end{gathered}
$$

θ_{1} is more general than θ_{2} :

$$
\begin{gathered}
\theta_{2}=\theta_{1} \lambda_{1} \text { with } \lambda_{1}=\{u \mapsto z\} \\
\text { and }
\end{gathered}
$$

θ_{2} is more general than θ_{1} :

$$
\theta_{1}=\theta_{2} \lambda_{2} \text { with } \lambda_{2}=\{z \mapsto u\}
$$

Note
λ_{1} and λ_{2} are renaming substitutions

Equivalence of mgu-s

Most general unifier of two expressions is unique
up to variable renaming

Unification Algorithm

Rule-based approach
General form of rules:

$$
\begin{gathered}
P ; \sigma \Longrightarrow Q ; \theta \\
\text { or } \\
P ; \sigma \Longrightarrow \perp \\
\text { where }
\end{gathered}
$$

\perp denotes failure
σ and θ are substitutions
P and Q are sets of expression pairs:

$$
\left\{\left\langle E_{1}, F_{1}\right\rangle, \ldots,\left\langle E_{n}, F_{n}\right\rangle\right\}
$$

Unification Rules

Trivial:

$$
\{\langle s, s\rangle\} \cup P^{\prime} ; \sigma \Longrightarrow P^{\prime} ; \sigma
$$

Decomposition:

$$
\begin{gathered}
\left\{\left\langle f\left(s_{1}, \ldots, s_{n}\right), f\left(t_{1}, \ldots, t_{n}\right)\right\rangle\right\} \cup P^{\prime} ; \sigma \Longrightarrow \\
\left\{\left\langle s_{1}, t_{1}\right\rangle, \ldots,\left\langle s_{n}, t_{n}\right\rangle\right\} \cup P^{\prime} ; \sigma
\end{gathered}
$$

Symbol Clash:
$\left\{\left\langle f\left(s_{1}, \ldots, s_{n}\right), g\left(t_{1}, \ldots, t_{m}\right)\right\rangle\right\} \cup P^{\prime} ; \sigma \Longrightarrow \perp$
if $f \neq g$.

Unification Rules (Contd.)

Orient:

$$
\{\langle t, x\rangle\} \cup P^{\prime} ; \sigma \Longrightarrow\{\langle x, t\rangle\} \cup P^{\prime} ; \sigma
$$

if t is not a variable.
Occurs Check:

$$
\{\langle x, t\rangle\} \cup P^{\prime} ; \sigma \Longrightarrow \perp
$$

if x occurs in t and $x \neq t$.
Variable Elimination:

$$
\{\langle x, t\rangle\} \cup P^{\prime} ; \sigma \Longrightarrow P^{\prime} \theta ; \sigma \theta
$$

if x does not occur in t, and $\theta=\{x \mapsto t\}$.

Unification Algorithm

In order to unify s and t

Create initial system $\{\langle s, t\rangle\} ; \varepsilon$ Apply successively unification rules.

Termination

The unification algorithm terminates either with \perp or with $\emptyset ; \sigma$

Soundness

$$
\begin{gathered}
\text { If } \\
P ; \varepsilon \Longrightarrow+\emptyset ; \sigma \\
\text { then } \\
\sigma \text { is a unifier of } P .
\end{gathered}
$$

Completeness

For any unifier θ of P
the unification algorithm
finds a unifier σ of P
such that σ is more general than θ

Major Result

If two expressions are unifiable unification algorithm computes their mgu

Example 1

Unify $p(f(a), g(x))$ and $p(y, y)$.

$$
\begin{aligned}
\{\langle p(f(a), g(x)), p(y, y)\rangle\} ; \varepsilon & \Longrightarrow \mathrm{Dec} \\
\quad\{\langle f(a), y\rangle,\langle g(x), y\rangle\} ; \varepsilon & \Longrightarrow \mathrm{Or} \\
\{\langle y, f(a)\rangle,\langle g(x), y\rangle\} ; \varepsilon & \Longrightarrow \mathrm{VarEl} \\
\{\langle g(x), f(a)\rangle\} ;\{x \mapsto f(a)\} & \Longrightarrow \mathrm{SymCl}
\end{aligned}
$$

$$
\perp
$$

Not unifiable

Example 2

Unify $p(a, x, h(g(z)))$ and $p(z, h(y), h(y))$.

$$
\begin{aligned}
\{\langle p(a, x, h(g(z))), p(z, h(y), h(y))\rangle\} ; \varepsilon & \Longrightarrow \mathrm{Dec} \\
\{\langle a, z\rangle,\langle x, h(y)\rangle,\langle h(g(z)), h(y)\rangle\} ; \varepsilon & \Longrightarrow_{\mathrm{Or}} \\
\{\langle z, a\rangle,\langle x, h(y)\rangle,\langle h(g(z)), h(y)\rangle\} ; \varepsilon & \Longrightarrow \mathrm{VarEI} \\
\{\langle x, h(y)\rangle,\langle h(g(a)), h(y)\rangle\} ;\{z \mapsto a\} & \Longrightarrow \mathrm{VarEI} \\
\{\langle h(g(a)), h(y)\rangle\} ;\{z \mapsto a, x \mapsto h(y)\} & \Longrightarrow \mathrm{Dec} \\
\{\langle g(a), y\rangle\} ;\{z \mapsto a, x \mapsto h(y)\} & \Longrightarrow \mathrm{Or} \\
\{\langle y, g(a)\rangle\} ;\{z \mapsto a, x \mapsto h(y)\} & \Longrightarrow \mathrm{VarEI} \\
\emptyset ;\{z \mapsto a, x \mapsto h(g(a)), y \mapsto g(a)\} &
\end{aligned}
$$

Answer: $\{z \mapsto a, x \mapsto h(g(a)), y \mapsto g(a)\}$

Example 3

Unify $p(x, x)$ and $p(y, f(y))$.

$$
\begin{aligned}
\{\langle p(x, x), p(y, f(y))\rangle\} ; \varepsilon & \Longrightarrow \text { Dec } \\
\{\langle x, y\rangle,\langle x, f(y)\rangle\} ; \varepsilon & \Longrightarrow \text { Varel } \\
\{\langle y, h(y)\rangle\} ;\{x \mapsto y\} & \Longrightarrow \text { Occh } \\
\perp &
\end{aligned}
$$

Not unifiable

Example 3 on Prolog

?- $p(X, X)=p(Y, f(Y))$.
$X=f(f(f(f(f(f(f(f(f(f(\ldots)))))))))$
$Y=f(f(f(f(f(f(f(f(f(f(\ldots)))))))))$
Yes

Occurrence Check

Prolog unification algorithm skips
 Occurrence Check

Reason:
Occurrence Check can be expensive Justification:

Most of the time this rule is not needed
Drawback:
Sometimes might lead to incorrect answers

Example

$\operatorname{less}(X, s(X))$.
foo:-less(s(Y),Y).
?- foo.
Yes

