
Computer Algebra
—

Problems and Developments

Franz Winkler

RISC-Linz
Johannes Kepler Universität

Linz, Austria

——————

An earlier version has been published in Computer Algebra

in Industry 2, A.M. Cohen, L. van Gastel, S.V. Lunel (eds.),

Wiley (1995)

Computer Algebra

Contents

I. What is computer algebra?

II. Some problem areas in computer algebra

III. Limitations of computer algebra

IV. History of CA systems

V. Conclusion and future developments

Computer Algebra 1

Lady Augusta Ada Byron on Charles Babbage’s “An-
alytical Engine”:

“Many persons who are not conversant with math-
ematical studies imagine that because the business
of [Babbage’s Analytical Engine] is to give its re-
sults in numerical notation, the nature of its pro-
cesses must consequently be arithmetical and numer-
ical rather than algebraic and analytical. This is an
error. The engine can arrange and combine its nu-
merical quantities exactly as if they were letters or
any other general symbols; and in fact it might bring
out its results in algebraic notation were provisions
made accordingly.”

Computer Algebra 2

I. What is computer algebra?

attempt at a definition:

Computer algebra is that subfield of scientific compu-
tation, which

• develops,
• analyses,
• implements, and
• applies

algebraic algorithms

Computer algebra is contained in the wider field of
Symbolic Computation. Computer algebra and com-
putational logic, i.e. computer supported reasoning,
are the most important subfields of symbolic com-
putation. But really, symbolic computation is not
so much a subfield of mathematics or computer sci-
ence, but actually a new systematically constructive
approach to these fields.

Computer Algebra 3

Some characteristic features of computer alge-
bra

• computation in algebraic structures

basic domains Z,Q,Zp,Qp (p–adic numbers), ...

algebraic extensions Q(α), p(α) = 0

polynomials R[x1, . . . , xn]

rational functions K(t1, . . . , tn)

matrices

differential fields (K,′), difference fields (K,∇)

finitely presented groups {a, b | aba = 1, bab = 1}

...

Computer Algebra 4

• manipulation of formulas

typically, in computer algebra we want to com-
pute ∫

x

x2 − 1
dx =

1
2

ln |x2 − 1|

instead of ∫ 1
2

0

x

x2 − 1
dx = 0.1438...

i.e. in general both the input and the output of
algorithms and programs are mathematical ex-
pressions or formulas rather than numbers.

Computer Algebra 5

• exact computation

exact computation rather than approximate
computation is the goal of computer algebra.

So, typically, we want to compute

(
√

3
2
,−1/2)

instead of
(0.86602...,−0.5)

as the solution of the system of equations

x4 + 2x2y2 + 3x2y + y4 − y3 = 0

x2 + y2 − 1 = 0

Computer Algebra 6

As a consequence of these characteristics, decision al-
gorithms can be built on computer algebra methods.

Problems that can be decided by computer algebra
methods include:

• factorization of polynomials

• equivalence of algebraic expressions

• solvability of systems of algebraic equations

• solvability of integration problems and differen-
tial equations problems

• validity of geometric formulae

Computer Algebra 7

Some areas of application for computer alge-
bra

• the piano movers problem in robotics

“find a path that will move a given body B from
an initial position to a desired final position.
Along this path the body B should not hit any
obstacles”

Computer Algebra 8

Legal positions of B are represented as a semi–
algebraic set L in Rm, i.e. sets of the form

>

{(x1, . . . , xm) | p(x1, . . . , xm) = 0 }
<

combined by union, intersection, and difference.

The problem is reduced to the question:

“Can two points P1, P2 in a semi–algebraic set
L be connected by a path, i.e. are they in the same
component of L?”

This question can be decided, for instance, by
Collins’ cylindrical algebraic decomposition method.

Computer Algebra 9

• theorem proving in elementary geometry

scope: geometric statements, that can be de-
scribed by polynomial equations

Example:

“the altitude pedal of the hypothenuse of a right–
angled triangle and the midpoints of the three
sides of the triangle lie on a circle”

hypotheses:

h1 ≡ 2y3 − y1 = 0 (E is midpoint of AC)

h2 ≡ (y7 − y3)2 + y2
8 − (y7 − y4)2 − (y8 − y5)2 = 0

(EM and FM are equally long)
...
...

hm

conclusion:

c ≡ (y7 − y3)2 + y2
8 − (y7 − y9)2 − (y8 − y10)2 = 0

(EM and HM are equally long)

The geometric problem is reduced to the alge-
braic problem:

“show that c ∈ radical(h1, . . . , hm)”

This algebraic problem can be decided by the
method of Gröbner bases.

Computer Algebra 11

• analysis of algebraic curves

We consider the plane curve (tacnode) defined
by the equation

f(x, y) = 2x4 + y4 − 3x2y − 2y3 + y2 = 0

This curve is an irreducible curve, which can be
checked by trying to factor f(x, y) by any com-
puter algebra system.

Computer Algebra 12

The tacnode has 2 singular points, where branches
intersect. They are the solutions of the system of
algebraic equations

f(x, y) = 0
∂f

∂x
(x, y) = 8x3 − 6xy = 0

∂f

∂y
(x, y) = 4y3 − 3x2 − 6y2 + 2y = 0

By a Gröbner basis computation this system is trans-
formed into the equivalent system

3x2 + 2y2 − 2y = 0
xy = 0

x3 = 0

So the singular points are (0, 0) and (0, 1).

Computer Algebra 13

We get the tangents at a singular point (a, b) by mov-
ing it to the origin with the transformation T (x, y) =
(x + a, y + b), factoring the form of lowest degree,
and applying the inverse transformation T−1(x, y) =
(x− a, y − b).

So the tangents at (0, 1) are

y =
√

3x+ 1, y = −
√

3x+ 1

and there is one tangent

y = 0

of multiplicity 2 at (0, 0).

Computer Algebra 14

• modelling in science and engineering

In science and engineering, it is common to ex-
press a problem in terms of integrals or differ-
ential equations with boundary conditions. Nu-
merical integration leads to approximations of
the values of the solution functions. But, as
R.W. Hammings has written, “the purpose of
computing is insight, not numbers.” So instead
of computing tables of values it would be much
more gratifying to derive formulas for the solu-
tion functions. Computer algebra algorithms can
do just that for certain classes of integration and
differential equation problems.

Computer Algebra 15

Consider, for example, the system of differential
equations

−6
dq

dx
(x) +

d2p

dx2
(x)− 6 sin(x) = 0,

6
d2q

dx2
(x) + a2 dp

dx
(x)− 6 cos(x) = 0

subject to the boundary conditions p(0) = 0, q(0) =
1, p′(0) = 0, q′(0) = 0. Given this information as
input, any of the major computer algebra systems
will derive the formal solution

p(x) = −12 sin(ax)
a(a2 − 1)

− 6 cos(ax)
a2

+
12 sin(x)
a2 − 1

+
6
a2
,

q(x) =
sin(ax)
a

− 2 cos(ax)
a2 − 1

+
(a2 + 1) cos(x)

a2 − 1

for a 6∈ {−1, 0, 1}.

Computer Algebra 16

II. Some problem areas in computer al-
gebra

Solution of algebraic equations

Solving by resultants

If f(x), g(x) are polynomials (their coefficients might
be polynomials themselves), the resultant of f and
g, resx(f, g), is a constant, the determinant of the
Sylvester matrix of f and g.

Fact: resx(f, g) = 0 if and only if f and g have
a common factor, or, in other words, there
is a solution to the system of equations
f(x) = g(x) = 0.

Computer Algebra 17

Example:

f1 = xz − xy2 − 4x2 − 1
4

= 0

f2 = y2z + 2x+
1
2

= 0

f3 = x2z + y2 +
1
2
x = 0

first we eliminate the variable z:

g1(x, y) = resz(f1, f2) =

y4x+ 4x2y2 +
1
4
y2 + 2x2 +

1
2
x

g1(x, y) = resz(f2, f3) =

y4 − 2x3 +
1
2
xy2 − 1

2
x2

Computer Algebra 18

finally we eliminate the variable y:

h = resy(g1, g2) =
1

1024
· x4 · (4x+ 1)2·

(32x5 − 216x4 + 64x3 − 42x2 + 32x+ 5)2

So every solution of the system has to have an x–
coordinate which is a root of h(x). Unfortunately,
not every root of h(x) can be extended to a solution
of the original system.

There are certain extraneous factors in the resultant.
In our example, only the last factor gives the correct
x–coordinates.

Computer Algebra 19

Solving by Gröbner bases

If

F = {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}

is given (as the basis for a polynomial ideal, or in
other words all the linear combinations of f1, . . . , fm,
or in other words all the consequences of relating
these polynomials to 0), then

the Gröbner basis of F (w.r.t. some ordering of the
power products)

GB(F)

is another basis for this same ideal with certain nice
properties.

Fact: The Gröbner basis of F w.r.t. a lexicographic
ordering is a triangularized system of polyno-
mials having the same solutions as the original
system F . After solving the polynomials with
the least number of variables in the Gröbner
basis, all these solutions can be extended to
solutions of the whole system.

Computer Algebra 20

We compute a Gröbner basis for

F = {f1, f2, f3}

This results in the new (and equivalent) system

65z + 64x4 − 432x3 + 168x2 − 354x+ 104 = 0

26y2 − 16x4 + 108x3 − 16x2 + 17x = 0

32x5 − 216x4 + 64x3 − 42x2 + 32x+ 5 = 0

The univariate polynomial g3(x) in the Gröbner basis
is irreducible.

There are 5 solutions of this univariate polynomial,
and therefore exactly 10 solutions of the whole system
(counting multiple solutions).

Computer Algebra 21

Now we could either stay in an algebraic mode of
computation, extend the rational numbers by a root
of g3, and solve the system in such a way.

Or we could easily approximate the roots of the sys-
tem numerically. An approximation of one of the
roots is

(−0.128475, 0.321145,−2.356718)

Computer Algebra 22

Indefinite summation

Given a sequence

a1, a2, . . .

(i.e. and expression generating this sequence), we
want to find an expression S(j), in which the sum-
mation sign has been eliminated and such that

S(j) =
j∑
i=1

ai.

This is a discrete analogue to indefinite integration.
S(j) may be thought of as an ‘anti–derivative’. Hav-
ing obtained S(j) we then have

n∑
i=m

ai = S(n)− S(m− 1)

where S(0) = 0.

E.g.

S(n) =
3n2 + 5n

4(n2 + 3n+ 2)
for

∞∑
i=1

1
i(i+ 2)

.

Computer Algebra 23

Gosper’s algorithm can produce indefinite summation
for hypergeometric series, i.e. for series

∞∑
i=1

ai

such that
an
an−1

is a rational function in n.

For instance,

n∑
i=1

i · xi =

n · xn+2 − (n+ 1) · xn+1 + x

(x− 1)2

Every major computer algebra system contains an im-
plementation of this algorithm due to Gosper.

Computer Algebra 24

Indefinite integration

Let a (real or complex) function

f(x)

be given by an expression.

We want to compute another expression describing a
function

F (x)

such that ∫
f(x)dx = F (x).

Computer algebra is able to do just that for a cer-
tain wide class of functional expressions (elementary
functions), which can be roughly described as
• start with rational functions p(x)/q(x)
• add logarithms and exponentials of expressions,

and therefore trigonometric functions
• add algebraic elements, i.e. roots of polynomials

This class of functional expressions contains most of
the situations treated in integral tables.

Computer Algebra 25

Integration of rational functions
Example:

R(x) =

3x11 − 2x10 + 7x9 + 2x7 + 23x6 − 10x5 + 18x4

−9x3 + 8x2 − 3x+ 1
3x9 − 2x8 + 7x7 − 4x6 + 5x5 − 2x4 + x3

=

We obtain∫
R(x) dx

=

2 log(3x2 − 2x+ 1)
3

− log(x2 + 1)
2

+

4 arctan((6x− 2)/2
√

2)
3
√

2
+

log(x) + arctan(x) +
4x3 − 4x2 + 2x− 1

2x4 + 2x2
+
x3

3
.

Computer Algebra 26

Integration of transcendental elementary functions

Risch’s algorithm can take a transcendental elemen-
tary function f(x), decide whether its integral can be
expressed as an elementary function g(x), and if so
compute g(x).

Example:

f(x) =

2x · exp(x2) · log(x) +
exp(x2)

x
+

log(x)− 2
(log2(x) + x)2

+

(2/x) · log(x) + 1/x+ 1
log2(x) + x

∫
f(x) =

exp(x2) · log(x)− log(x)
log2(x) + x

+ log(log2(x) + x)

Risch’s algorithm is implemented in many computer
algebra systems.

Computer Algebra 27

Greatest common divisors of polynomials

As we have seen above, the computation of greatest
common divisors (gcd) of polynomials is ubiquitous
in computer algebra. Therefore we need very fast
algorithms for gcd computation.

One of the problems is the explosion of the coeffi-
cients. Over the last 2 decades sophisticated algo-
rithms have been developed for tackling this problem.

Computer Algebra 28

Example:
consider the two bivariate polynomials

f(x, y) = y6 + xy5 + x3y − xy + x4 − x2,

g(x, y) = xy5 − 2y5 + x2y4 − 2xy4 + xy2 + x2y

with integral coefficients. Let y be the main variable,
so that the coefficients of powers of y are polynomials
in x.

Euclid’s algorithm yields the polynomial remainder
sequence

r0 = f,

r1 = g,

r2 =

(2x− x2)y3 + (2x2 − x3)y2 + (x5 − 4x4 + 3x3+

4x2 − 4x)y + x6 − 4x5 + 3x4 + 4x3 − 4x2,

r3 =

(−x7 + 6x6 − 12x5 + 8x4)y2+

(−x13 + 12x12 − 58x11 + 136x10 − 121x9−
117x8 + 362x7 − 236x6 − 104x5 + 192x4 − 64x3)y

− x14 + 12x13 − 58x12 + 136x11 − 121x10−
116x9 + 356x8 − 224x7 − 112x6 + 192x5 − 64x4,

Computer Algebra 29

r4 =

(−x28 + 26x27 − 308x26 + 2184x25 − 10198x24+

32188x23 − 65932x22 + 68536x21 + 42431x20−
274533x19 + 411512x18 − 149025x17 − 431200x16

+ 729296x15 − 337472x14 − 318304x13+

523264x12 − 225280x11 − 78848x10 + 126720x9−
53248x8 + 8192x7)y

− x29 + 26x28 − 308x27 + 2184x26 − 10198x25+

32188x24 − 65932x23 + 68536x22 + 42431x21−
274533x20 + 411512x19 − 149025x18 − 431200x17

+ 729296x16 − 337472x15 − 318304x14+

523264x13 − 225280x12 − 78848x11 + 126720x10

− 53248x9 + 8192x8.

Computer Algebra 30

The greatest common divisor of f and g is obtained
by eliminating common factors p(x) in r4.

The final result is

gcd(f, g) = y + x.

Although the inputs and the output are small, the
intermediate expressions get very big. The biggest
polynomial in this computation happens to occur in
the pseudo–division of r3 by r4. The intermediate
polynomial has degree 70 in x.

Computer Algebra 31

Modular gcd algorithm

The most efficient algorithm for computing gcd’s
of multivariate polynomials is a modular algorithm.
The basic idea is to apply homomorphisms to the
coefficients, compute the gcd’s of the evaluated poly-
nomials, and use the Chinese remainder algorithm to
reconstruct the actual coefficients in the gcd.

If the input polynomials are univariate, we can take
homomorphisms Hp, mapping an integer a to a mod
p. If the input polynomials are multivariate, we can
take evaluation homomorphisms of the form Hx1=r1

for reducing the number of variables.

In our example we get

gcd(Hx=2(f),Hx=2(g)) = y + 2,
gcd(Hx=3(f),Hx=3(g)) = y + 3.

So the gcd is y + x. Never during this algorithm did
we have to consider big coefficients.

Computer Algebra 32

Factorization of polynomials

Like gcd computation, factorization of polynomials
is a basic building block of computer algebra algo-
rithms.

For factoring a univariate polynomial

f(x)

with integer coefficients, we proceed in the following
way:
• factor f(x) modulo a prime p
• determine a bound B for the coefficients of factors

of f and an integer k s.t. pk > B
• lift the factorization of f mod p to a factorization

of f mod pk

• combine factors in order to get the factors over the
integers

Computer Algebra 33

Example: consider the polynomial

f(x) = 6x7 + 7x6 + 4x5 + x4 + 6x3 + 7x2 + 4x+ 1.

Taking p = 5, we get the factorization

f ≡ (x− 2)(x2 − 2)(x2 + 2)(x2 − x+ 2) (mod5).

Lifting this to a factorization modulo 52 we obtain

f ≡ (2x+ 1)(x2 − 7)(x2 + 7)(3x2 + 2x+ 1) (mod25).

Now we can combine the 2nd and 3rd factors to obtain
the factorization over the integers

f = (2x+ 1)(x4 + 1)(3x2 + 2x+ 1).

Computer Algebra 34

Simplification of expressions

As we have seen above, the swell of intermediate ex-
pressions can be a serious problem in computer alge-
bra algorithms.

This may lead to exhaustion of the storage space and
it may make the final result all but unreadable.

Therefore, all the expressions and formulas need to
be “simplified”.

Computer Algebra 35

There a basically two approaches to simplification:

non–canonical simplification: the expressions are
somehow made shorter or more readable. However,
it is not always easy to determine what “simpler”
should mean. E.g.

x2 − 1
x− 1

∼ x+ 1,

but

x100 − 1
x− 1

∼ x99 + . . .

canonical simplification: formulas which are equiva-
lent are simplified to the same normal form. If that is
possible, then the underlying equivalence can be de-
cided by reducing to normal forms and checking for
syntactical equality.
This is for instance possible for equivalences described
by polynomial equations (Gröbner bases).
However, for some other very simple classes of formu-
las this is theoretically impossible.

Computer Algebra 36

III. Limitations of computer algebra

(Un)Decidable simplification problems

Simplification problem for radical expressions

Radical expressions are built from
• variables x1, . . . , xn
• rational constants
• the arithmetic function symbols +,−, ·, /
• and the radical sign q

√ , or, equivalently, rational
powers (“radicals”) sr for r ∈ Q

Two radical expressions are equivalent iff they de-
scribe the same (meromorphic) functions.

So, for instance,
√

2√
x+ 1 · 4

√
24x+ 24

∼
4
√

63 · 4
√
x+ 1

6x+ 6

The equivalence of unnested radical expressions (rad-
icals do not contain other radicals) can be decided by
an algorithm due to Caviness and Fateman.

Computer Algebra 37

Simplification probl. for transcendental expressions

A certain class of transcendental expressions, R2, is
defined in the following way:
• one variable x
• rational constants
• π
• function symbols +, ·, sin, abs

Two expressions are equivalent if and only if they
describe the same functions on R.

Based on work by Richardson and Matijasevic’s proof
of the undecidability of Hilbert’s tenth problem, Cavi-
ness has shown that the equivalence of expressions in
R2 is undecidable.

Computer Algebra 38

Problem of constants

In algorithms for indefinite integration we need to
build up a tower of fields in which the integrand can
be expressed, e.g.

x · ex ∈ Q(x, exp(x)).

A new exponential or logarithm, e.g. exp(x+ 1) may
fail to be in the previous field by virtue of just a
constant.
It may appear reasonable to enlarge the constant field
to

Q(exp(1)).

The problem is, that another such adjoined constant,
e.g. 2πi, may be algebraic over this field without our
knowledge. This, of course, means that we cannot
affirmatively decide whether a constant is zero or not.
Our integration algorithm might then output a closed
form solution which is none since one of the produced
denominators vanishes.

Computer Algebra 39

Various theorems and conjectures may help tackle
particular cases:

Theorem (Lindemann, 1882): If a1, . . . , an ∈ Q are
linearly independent over
Q, then exp(a1), . . . , exp(an) are algebraically inde-
pendent over Q, i.e.

tr deg
Q

(Q(exp(a1), . . . , exp(an))) = n.

Schanuel’s conjecture: If c1, . . . , cn ∈ C are linearly
independent over Q, then

tr deg
Q

(Q(c1, . . . , cn, exp(c1), . . . , exp(cn))) ≥ n.

This conjecture implies that e and π are algebraically
independent, but even this has not been established.

Computer Algebra 40

Rewrite rules in computer algebra

The computer algebra system Mathematica uses pat-
tern matching and transformation rules / rewrite
rules as a basic concept underlying all other program-
ming constructs, control structures, procedure and
function definitions.

So, for instance, the definition of our own natural
logarithm log may look like

log[E]=1
log[1]=0
log[x y] := log[x] + log[y]
log[x ^y] := y log[x]

There are several problems in connection with such
rewrite rules. The two most important ones are

• termination and

• completeness.

Computer Algebra 41

Termination of systems of rewrite rules

Given a TRS (term rewriting system) R, we want to
know whether all sequences of rewrites finally termi-
nate.

This is an undecidable problem !!!

Reason: the halting problem for Turing machines can
be reduced to the problem of termination of certain
TRS’s

Computer Algebra 42

Completeness of TRSs

a TRS R is basically a system of equations E together
with an orientation of these equations. Whereas in
general transformations w.r.t. E can be done in both
directions, transformations w.r.t. R are allowed only
from left to right.

So the question is whether all equivalences

s = t

which can be proved by E can also be proved by using
only the rules in R.

Computer Algebra 43

Example: theory of free groups
In mathematics a group is a set with operations 1
(arity 0), · (arity 2), −1 (arity 1), satisfying the group
axioms

(G1) 1 · x = x,
(G2) x−1 · x = 1,
(G3) (x · y) · z = x · (y · z).

We are interested in deciding equations of the form
s = t, where both s and t are terms constructed from
variables and the group operations, for instance

(x−1 · (x · y))−1 = (x−1 · y)−1 · x−1 ?

Orienting the group axioms leads to the rewrite rule
system RG:

(RG1) 1 · x→ x,
(RG2) x−1 · x→ 1,
(RG3) (x · y) · z → x · (y · z).

Unfortunately, the above terms cannot be shown to
be equivalent using RG.

Computer Algebra 44

However, we could give RG as input to the Knuth–
Bendix completion procedure, which produces an
equivalent TRS RG′ (corresponding to the same
equational theory G), and which is complete in the
sense that every equation that can be proved by G
can also be proved by reductions in RG′.

(RG’1) 1 · x→ x
(RG’2) x−1 · x→ 1
(RG’3) (x · y) · z → x · (y · z)
(RG’4) x−1 · (x · y)→ y
(RG’5) x · 1→ x
(RG’6) 1−1 → 1
(RG’7) (x−1)−1 → x
(RG’8) x · x−1 → 1
(RG’9) x · (x−1 · y)→ y
(RG’10) (x · y)−1 → y−1 · x−1

Using RG′ we can prove the equivalence

(x−1 · (x · y))−1 = (x−1 · y)−1 · x−1

Computer Algebra 45

The Knuth–Bendix procedure, however, may or may
not terminate for a given TRS.

So in general, it might be that no complete system can
be constructed which would let us decide the equiva-
lence introduced by a set of rewrite rules.

Computer Algebra 46

IV. History of CA systems

• SAC: started approx. 1965
author: G.E. Collins
Univ. of Wisconsin at Madison, now RISC-LINZ
development of fast polynomial algorithms

• MACSYMA: started approx. 1968
author: J. Moses
Massachusetts Institute of Technology
big library of algebraic algorithms

• REDUCE: started approx. 1968
author: A. Hearn
Univ. of Utah, now Rand Corp.
special functions for physics

• AXIOM: started approx. 1978
author: R.D. Jenks
IBM Yorktown Heights
generic algorithms

• DERIVE: started approx. 1985
author: R. Stoutemyer
Univ. of Hawaii
designed for small computers

Computer Algebra 47

• MAPLE: started approx. 1980
authors: K. Geddes and G. Gonnet
Univ. of Waterloo and (now) ETH Zürich
small kernel, accommodates many users

• MATHEMATICA: started approx. 1985
author: S. Wolfram
Wolfram research
good interface to numerical and graphical comp.

Computer Algebra 48

V. Conclusions and future develop-
ments

Symbolic computation is the subarea of mathe-
matics and computer science which solves problems
on symbolic objects representable on a computer.
Typical examples of such objects are algebraic expres-
sions, logical propositions, and programs themselves.
The problem solutions are integrated in many ad-
vanced software systems for computer algebra, com-
puter aided design and manufacturing, computer sup-
ported reasoning, knowledge management, and for-
mal system specifications and verification. Besides
playing a fundamental role within mathematics it-
self, symbolic computation is thus a key technology
in many scientific and technical areas.

Within mathematics, the wide availability of com-
puter algebra systems such as Maple or Mathemat-
ica has stimulated a variety of new developments to-
wards algorithms and constructiveness. Examples
range from classical algebra to analysis, combina-
torics, number theory and beyond. The new possibili-
ties to do mathematics with the computer give rise to
numerous future challenges for research in symbolic
computation. To name only a few examples:

– the combination of numerical and symbolic scien-
tific computing,

– the design of automated systems integrating the
mathematical tasks of proving and solving,

– or the development of methods for computer-
assisted mathematical knowledge management.

Symbolic algorithms and their implementations are
going to play a more and more significant role both in
natural sciences and in industrial engineering. Typi-
cal examples are
– Gröbner bases in robotics,
– geometry of curves and surfaces in geometric mod-

elling and optimization,
– symbolic methods for differential problems.

Extrapolating from these recent developments,
one may anticipate that symbolic computation is go-
ing to change the paradigm of how mathematical re-
search is done, how mathematics can be taught and
applied and how mathematical knowledge is orga-
nized, stored, and made accessible. Thus symbolic
computation is not just one particular, special branch
of mathematics but a new paradigm that penetrates
and changes the entire field of mathematics and its
applications.

