
Structures and Trees
Lists

Recursive Search
Mapping

Logic Programming
Using Data Structures

Part 1

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Contents

1 Structures and Trees

2 Lists

3 Recursive Search

4 Mapping

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Representing Structures as Trees

Structures can be represented as trees:

Each functor — a node.
Each component — a branch.

Example

parents(charles,elizabeth,philip).

parents

charles elizabeth philip

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Representing Structures as Trees

Branch may point to another structure: nested structures.

Example

a+b*c.

+

a *

b c

book(moby_dick,author(herman, melville)).

book

moby_dick author

herman melville

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Parsing

Represent a syntax of an English sentence as a structure.

Simplified view:
Sentence: noun, verb phrase.
Verb phrase: verb, noun.

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Parsing

Structure:

sentence(noun(X),verb_phrase(verb(Y),noun(Z))).

Tree representation:

sentence

noun

X

verb_phrase

verb

Y

noun

Z

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Parsing

Example

John likes Mary.

sentence(noun(John),verb_phrase(verb(likes),noun(Mary))).

sentence

noun

John

verb_phrase

verb

likes

noun

Mary

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Lists

Very common data structure in nonnumeric programming.
Ordered sequence of elements that can have any length.

Ordered: The order of elements in the sequence matters.
Elements: Any terms — constants, variables, structures —
including other lists.

Can represent practically any kind of structure used in
symbolic computation.
The only data structures in LISP — lists and constants.
In PROLOG — just one particular data structure.

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Lists

A list in PROLOG is either
the empty list [], or
a structure .(h, t) where h is any term and t is a list.
h is called the head and t is called the tail of the list .(h, t).

Example

[].

.(a, []).

.(a, .(b, [])).

.(a, .(a, .(1, []))).

.(.(f (a, X), []), .(X , [])).

.([], []).

NB. .(a, b) is a PROLOG term, but not a list!

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Lists as Trees

Lists can be represented as a special kind of tree.

Example

.(a, [])
.

a []

.(.(X , []), .(a, .(X , [])))

.

.

X []

.

a .

X []

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

List Notation

Syntactic sugar:
Elements separated by comma.
Whole list enclosed in square brackets.

Example

.(a, []) [a]

.(.(X , []), .(a, .(X , []))) [[X], [a, X]]

.([], []) [[]]

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

List Manipulation

Splitting a list L into head and tail:
Head of L — the first element of L.
Tail of L — the list that consists of all elements of L except
the first.

Special notation for splitting lists into head and tail:
[X |Y], where X is head and Y is the tail.

NB. [a|b] is a PROLOG term that corresponds to .(a, b). It is not
a list!

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Head and Tail

Example

List Head Tail
[a, b, c, d] a [b, c, d]
[a] a []
[] (none) (none)
[[the, cat], sat] [the, cat] [sat]
[X + Y , x + y] X + Y [x + y]

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Unifying Lists

Example

[X , Y , Z] = [john, likes, fish] X = john, Y = likes,
Z = fish

[cat] = [X |Y] X = cat , Y = []
[X , Y |Z] = [mary , likes, wine] X = mary , Y = likes,

Z = [wine]
[[the, Y], Z] = [[X , hare], [is, here]] X = the, Y = hare,

Z = [[is, here]]
[golden|T] = [golden, norfolk] T = norflok

[vale, horse] = [horse, X] (none)
[white|Q] = [P|horse] P = white, Q = horse

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Strings are Lists

PROLOG strings — character string enclosed in double
quotes.
Examples: "This is a string", "abc", "123", etc.
Represented as lists of integers that represent the
characters (ASCII codes)
For instance, the string "system" is represented as
[115, 121, 115, 116, 101, 109].

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Membership in a List

member(X,Y) is true when X is a member of the list Y.

One of Two Conditions:
1 X is a member of the list if X is the same as the head of the

list
member(X,[X|_]).

2 X is a member of the list if X is a member of the tail of the
list

member(X,[_|Y]) :- member(X,Y).

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Recursion

First Condition is the boundary condition.
(A hidden boundary condition is when the list is the empty
list, which fails.)
Second Condition is the recursive case.
In each recursion the list that is being checked is getting
smaller until The predicate is satisfied or The empty list is
reached.

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Member Success

?- member(a,[a,b,c]).
Call: (8) member(a,[a,b,c]) ?
Exit: (8) member(a,[a,b,c]) ?

Yes

?- member(b,[a,b,c]).
Call: (8) member(b,[a,b,c]) ?
Call: (9) member(b,[b,c]) ?
Exit: (9) member(b,[b,c]) ?
Exit: (8) member(b,[a,b,c]) ?

Yes

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Member Failure

?- member(d,[a,b,c]).
Call: (8) member(d,[a,b,c]) ?
Call: (9) member(d,[b,c]) ?
Call: (10) member(d,[c]) ?
Call: (11) member(d,[]) ?
Fail: (11) member(d,[]) ?
Fail: (10) member(d,[c]) ?
Fail: (9) member(b,[b,c]) ?
Fail: (8) member(b,[a,b,c]) ?

No

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Member. Questions

What happens if you ask PROLOG the following questions:

?- member(X,[a,b,c]).
?- member(a,X).
?- member(X,Y).
?- member(X,_).
?- member(_,Y).
?- member(_,_).

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Recursion. Termination Problems

Avoid circular definitions. The following program will loop
on any goal involving parent or child:

parent(X,Y):-child(Y,X).
child(X,Y):-parent(Y,X).

Use left recursion carefully. The following program will loop
on ?- person(X):

person(X):-person(Y),mother(X,Y).
person(adam).

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Recursion. Termination Problems

Rule order matters.
General heuristics: Put facts before rules whenever
possible.
Sometimes putting rules in a certain order works fine for
goals of one form but not if goals of another form are
generated:
islist([_|B]):-islist(B).
islist([]).

works for goals like islist([1,2,3]), islist([]),
islist(f(1,2)) but loops for islist(X).
What will happen if you change the order of islist
clauses?

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Mapping?

Map a given structure to another structure given a set of rules:

1 Traverse the old structure component by component
2 Construct the new structure with transformed components.

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Mapping a Sentence to Another

Example
you are a computer maps to a reply i am not a computer.
do you speak french maps to a reply no i speak german.

Procedure:
1 Accept a sentence.
2 Change you to i.
3 Change are to am not.
4 Change french to german.
5 Change do to no.
6 Leave the other words unchanged.

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Mapping a Sentence. PROLOG Program

Example
change(you,i).
change(are,[am,not]).
change(french,german).
change(do,no).
change(X,X).

alter([],[]).
alter([H|T],[X|Y]) :-

change(H,X),
alter(T,Y).

Temur Kutsia Logic Programming

Structures and Trees
Lists

Recursive Search
Mapping

Boundary Conditions

Termination: alter([],[]).
Catch all (If none of the other conditions were satisfied,
then just return the same): change(X,X).

Temur Kutsia Logic Programming

	Structures and Trees
	Lists
	Recursive Search
	Mapping

