
Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Logic Programming
Examples

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Contents

1 Sorted Tree Dictionary

2 Searching Mazes

3 Findall

4 Graph Search

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Sorted Tree Dictionary

Need Associations between items of information.

Dictionary: Associates word with its definition or translation or
with facts about it.

Purpose: Retrieval.

Challenge: Efficiency.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Sorted Tree Dictionary

Example

Task: Make an index of the performance of horses in
racing.

Define: winnings(X,Y) , X – the name of the horse, Y –
the number of guineas won.

Facts:
winnings(abaris, 582).
winnings(careful,17).
winnings(jingling_silver,300).
winnings(maloja,356).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Data Search

Naive search:

Linear search top-down.

Facts at the beginning of the database are retrieved faster
than those at the end.

Might become an issue for big databases.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Data Search

Smarter way:

Organize data in indices or dictionaries.

Well-known techniques in computer science.

Prolog itself uses some of these methods to store its facts
and rules. (Will be discussed in next lectures.)

Nevertheless, sometimes it is helpful to use these methods
in our programs.

In this lecture: A sorted tree method for representing a
dictionary.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Sorted Trees

Sorted trees:

Efficient way of using a dictionary.

A demonstration how the lists of structures are helpful.

Consist of structures called nodes .

One node for each entry in the dictionary.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Sorted Trees

Nodes in sorted trees:

Contain four associated items of infromation: key, extra
info, two tails.

Key: The name that determines its place in the dictionary,
e.g., horse name.

Extra info: contains any information about the object
involved, e.g., the winnings.

First tail: Points to a node whose key is alphabetically less
than the key in the node itself.

Second tail: Points to a node whose key is alphabetically
greater than the key in the node itself.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Data Structure

w(H,W,L,G) where

H: The name of a horse (an atom), used as a key.

W: the amount of guineas won (an integer).

L: The structure with a horse whose name is less than H’s.

G: The structure with a horse whose name is greater than
H’s.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Data Structure

Structure for a small set of horses, represented as a tree:

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Data Structure

Structure for a small set of horses, represented as a PROLOG

structure:
w(massinga,858,

w(braemar,385,
w(adela,588,_,_),

_),
w(panorama,158,

w(nettlewed,579,_,_).
_)

).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Program

"Look up" names of horses in the structure to find out how
many guineas they won.

Structure: w(H,W,L,G).

Boundary condition: The name of the horse we are looking
for is H.

Recursive case: Use aless to decide which branch of the
tree, L or G, to look up recursively.

Using these ideas, define the predicate lookup(H,S,G) :
Horse H, when looked up in index S (a w structure), won G
guineas.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Program

lookup(H, w(H,G,_,_),G) :- !.

lookup(H, w(H1,_,Before,_), G) :-
aless(H,H1),
lookup(H,Before,G).

lookup(H, w(H1,_,_,After), G) :-
not(aless(H,H1)),
lookup(H,After,G).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Asking Questions

Interesting property:

If a name of a horse we are looking for is not in the
structure, then the information we supply about the horse
using lookup as a goal will be instantiated in the structure.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Goals

Example
?- lookup(ruby_vintage,X,582).

X = w(ruby_vintage,582,_B,_A);

?- lookup(ruby_vintage,X,582),lookup(maloja,X,356).

X = w(ruby_vintage,582, w(maloja,356,_C,_B),_A);

?- lookup(a,X,100),lookup(b,X,200),lookup(z,X,300),
lookup(m,X,400).

X = w(a,100,_E, w(b,200,_D,
w(z,300,w(m,400,_C,_B),_A)));

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Searching Mazes

Searching for a telephone in a building:

How do you search without getting lost?

How do you know that you have searched the whole
building?

What is the shortest path to the telephone?

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Steps

1 Go to the door of any room
2 If the room number in on the list (of already visited) ignore

the room and go to step 1.
3 Add the room to the list.
4 Look in the room for a telephone.
5 If there is no telephone, go to step 1. Otherwise, we stop

and our list has the path that we took to come to the
correct room.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Maze

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Idea

When in a room:

We are in the room we want to be in, or

We have to pass through a door, and continue
(recursively).

We go into the other room if we have not been there yet (not on
the list).

go(X,Y,T) : Succeeds if one can go from room X to room Y. T
contains the list of roomes visited so far.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Program

go(X,X,_).

go(X,Y,T) :- door(X,Z),
write(’Go into room’),
write(Z),nl,
not(member(Z,T)),
go(Z,Y,[Z|T]).

go(X,Y,T) :- door(Z,X),
write(’Go into room’),
write(Z),nl,
not(member(Z,T)),
go(Z,Y,[Z|T]).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Run

hasphone(g) :

Phone is in the room g.

Add to the database.

Goals:

?- go(a,X,[]),hasphone(X). Generate-and-test,
inefficient.

?- hasphone(X),go(a,X,[]). Better.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Findall

Determine all the terms that satisfy a certain predicate.

findall(X,Goal,L) : Succeeds if L is the list of all those X’s
for which Goal holds.

Example
?- findall(X, member(X,[a,b,a,c]),L).

X = _G166
L = [a,b,a,c] ;
No

?- findall(X, member(X,[a,b,a,c]),[a,b,c]).

No

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

More Examples on Findall

Example
?- findall(X, member(5,[a,b,a,c]),L).

X = _G166
L = [] ;
No

?- findall(5, member(X,[a,b,a,c]),L).

X = _G166
L = [5,5,5,5] ;
No

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

More Examples on Findall

Example
?- findall(5, member(a,[a,b,a,c]),L).

L = [5,5] ;
No

?- findall(5, member(5,[a,b,a,c]),L).

L = [] ;
No

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Implementation of Findall

findall is a built-in predicate.

However, one can implement it in PROLOG as well:

findall(X,G,_) :-
asserta(found(mark)),
call(G),
asserta(found(X)),
fail.

findall(_,_,L) :-
collect_found([],M),
!,
L=M.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Implementation of Findall , Cont.

collect_found(S,L) :-
getnext(X),
!,
collect_found([X|S],L).

collect_found(L,L).

getnext(X) :-
retract(found(X)),
!,
X \== mark.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Sample Runs

?- findall(X,member(X,[a,b,c]), L).

L = [a,b,c] ;
No

?- findall(X, append(X,Y,[a,b,c]), L).

L = [[], [a], [a,b], [a,b,c]] ;
No

?- findall([X,Y], append(X,Y,[a,b,c]), L).

L = [[[],[a,b,c]], [[a],[b,c]], [[a,b],[c]],
[[a,b,c],[]]] ;
No

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Representing Graphs

a(g,h).
a(g,d).
a(e,d).
a(h,f).
a(e,f).
a(a,e).
a(a,b).
a(b,f).
a(b,c).
a(f,c).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Moving Through Graph

Simple program for searching the graph:

go(X,X).
go(X,Y) :- a(X,Z),go(Z,Y).

Drawback: For cyclic graphs it will loop.

Solution: Keep trial of nodes visited.

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Improved Program for Graph Searching

go(X,Y,T) : Succeeds if one can go from node X to node Y. T
contains the list of nodes visited so far.

go(X,X,T).
go(X,Y,T) :- a(X,Z),

legal(Z,T),
go(Z,Y,[Z|T]).

legal(X,[]).
legal(X,[H|T]) :- X \= H,

legal(X,T).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Car Routes

a(newcastle,carlisle,58).
a(carlisle,penrith,23).
a(darlington,newcastle,40).
a(penrith,darlington,52).
a(workington,carlisle,33).

a(workington,penrith,39).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Car Routes Program

a(X,Y) :- a(X,Y,_).

go(Start,Dest,Route) :-
go0(Start,Dest,[],R),
rev(R,Route).

go0(X,X,T,[X|T]).
go0(Place,Dest,T,Route) :-

legalnode(Place,T,Next),
go0(Next,Dest,[Place|T],Route).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Car Routes Program, Cont.

legalnode(X,Trail,Y) :-
(a(X,Y) ; a(Y,X)),
legal(Y,Trail).

legal(X,[]).
legal(X,[H|T]) :- X \= H,

legal(X,T).

rev(L1,L2) :- revzap(L1,[],L2).

revzap([X|L],L2,L3) :-
revzap(L,[X|L2],L3)

revzap([],L,L).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Runs

?- go(darlington,workington,X).

X = [darlington,newcastle,carlisle,
penrith,workington];

X = [darlington,newcastle,carlisle,
workington];

X = [darlington,penrith,carlisle,workington];

X = [darlington,penrith,workington];

no

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Findall Paths

go(Start,Dest,Route) :-
go1([[Start]],Dest,[],R),
rev(R,Route).

go1([First|Rest],Dest,First) :-
First = [Dest|_].

go1([[Last|Trail]|Others],Dest,Route] :-
findall([Z,Last|Trail],

legalnode(Last,Trail,Z),
List),

append(List,Others,NewRoutes),
go1(NewRoutes,Dest,Route).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Depth First

?- go(darlington,workington,X).

X = [darlington,newcastle,
carlisle,penrith,workington];

X = [darlington,newcastle,
carlisle,workington];

X = [darlington,penrith,
carlisle,workington];

X = [darlington,penrith,workington];

no

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Depth, Breadth First

go1([[Last|Trail]|Others],Dest,Route]:-
findall([Z,Last|Trail],

legalnode(Last,Trail,Z),
List),

append(List,Others ,NewRoutes),
go1(NewRoutes,Dest,Route).

go1([[Last|Trail]|Others],Dest,Route]:-
findall([Z,Last|Trail],

legalnode(Last,Trail,Z),
List),

append(Others,List ,NewRoutes),
go1(NewRoutes,Dest,Route).

Temur Kutsia Logic Programming

Sorted Tree Dictionary
Searching Mazes

Findall
Graph Search

Breadth First

?- go(darlington,workington,X).

X = [darlington,penrith,workington];

X = [darlington,newcastle,
carlisle,workington];

X = [darlington,penrith,
carlisle,workington];

X = [darlington,newcastle,
carlisle,penrith,workington];

no

Temur Kutsia Logic Programming

	Sorted Tree Dictionary
	Searching Mazes
	Findall
	Graph Search

