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Basic Notions

Term: Constant, variable, or compound term.

Compound Term: Functor, arguments
f (t1, . . . , tn)

Functor: Name, arity
f/n

Goal: Atom or compound term.
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Logic Programs

Clause: Universally quantified logical sentence
A← B1, . . . , Bk , k ≥ 0
A and Bi ’s are goals.

Declarative reading: A is implied by the conjunction of the Bi ’s.

Procedural reading: To answer the query A, answer the
conjunctive query B1, . . . , Bk .

Logic Program: Finite set of clauses.
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Computation

Query: Existentially quantified conjunction
← A1, . . . , An, n > 0
Ai ’s are goals.

Computation of a Logic Program P: finds an instance of a
given query logically deducible from P.
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How to Compute

Start from initial query G.

Computation terminates – success or failure.

Computation does not terminate – no result.

Output of a successful computation: the instance of G
proved.

A given query can have several successful computations
with different output.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Abstract Interpreter

INPUT:

A logic program P and a query G.

OUTPUT:

Gθ, if this was the instance of G deduced from P, or failure if
failure has occurred.
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Abstract Interpreter

ALGORITHM:

Let resolvent be G
While resolvent is not empty do

1 Choose a goal A from resolvent.
2 Choose a renamed clause A′ ← B1, . . . , Bn from P such

that A and A′ unify with an mgu θ (exit if no such goal and
clause exist).

3 Remove A from and add B1, . . . , Bn to resolvent.
4 Apply θ to resolvent and to G.

If resolvent it empty, return G, else return failure.
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Choosing and Adding

Choosing and Adding:

Left unspecified in the abstract interpreter.

Must be resolved in a realization of the computational
model.
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Two Choices

Completely different nature.
Choice of a goal:

Arbitrary.

Does not affect computation.

If there exists a successful computation by choosing one
goal, then there is a successful computation by choosing
any other goal.

Choice of a clause:

Non-deterministic.

Affects computation.

Choosing one clause might lead to success, while
choosing some other might lead to failure.
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Adding Goal to Resolvent

Assume: Always the leftmost goal to be chosen

Then: Adding new goal to the beginning of the resolvent
gives depth-first search.
Adding new goal to the end of the resolvent gives
breadth-first search.
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Prolog’s Solution

Choice of a goal: leftmost.

Choice of a clause: Topmost.

Adding new goal to the resolvent: At the beginning.
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