
Preliminaries
Abstract Interpreter

Choice Points

Logic Programming
Computational Model

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Contents

1 Preliminaries

2 Abstract Interpreter

3 Choice Points

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Basic Notions

Term: Constant, variable, or compound term.

Compound Term: Functor, arguments
f (t1, . . . , tn)

Functor: Name, arity
f/n

Goal: Atom or compound term.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Logic Programs

Clause: Universally quantified logical sentence
A← B1, . . . , Bk , k ≥ 0
A and Bi ’s are goals.

Declarative reading: A is implied by the conjunction of the Bi ’s.

Procedural reading: To answer the query A, answer the
conjunctive query B1, . . . , Bk .

Logic Program: Finite set of clauses.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Computation

Query: Existentially quantified conjunction
← A1, . . . , An, n > 0
Ai ’s are goals.

Computation of a Logic Program P: finds an instance of a
given query logically deducible from P.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

How to Compute

Start from initial query G.

Computation terminates – success or failure.

Computation does not terminate – no result.

Output of a successful computation: the instance of G
proved.

A given query can have several successful computations
with different output.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Abstract Interpreter

INPUT:

A logic program P and a query G.

OUTPUT:

Gθ, if this was the instance of G deduced from P, or failure if
failure has occurred.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Abstract Interpreter

ALGORITHM:

Let resolvent be G
While resolvent is not empty do

1 Choose a goal A from resolvent.
2 Choose a renamed clause A′ ← B1, . . . , Bn from P such

that A and A′ unify with an mgu θ (exit if no such goal and
clause exist).

3 Remove A from and add B1, . . . , Bn to resolvent.
4 Apply θ to resolvent and to G.

If resolvent it empty, return G, else return failure.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Choosing and Adding

Choosing and Adding:

Left unspecified in the abstract interpreter.

Must be resolved in a realization of the computational
model.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Two Choices

Completely different nature.
Choice of a goal:

Arbitrary.

Does not affect computation.

If there exists a successful computation by choosing one
goal, then there is a successful computation by choosing
any other goal.

Choice of a clause:

Non-deterministic.

Affects computation.

Choosing one clause might lead to success, while
choosing some other might lead to failure.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Adding Goal to Resolvent

Assume: Always the leftmost goal to be chosen

Then: Adding new goal to the beginning of the resolvent
gives depth-first search.
Adding new goal to the end of the resolvent gives
breadth-first search.

Temur Kutsia Logic Programming



Preliminaries
Abstract Interpreter

Choice Points

Prolog’s Solution

Choice of a goal: leftmost.

Choice of a clause: Topmost.

Adding new goal to the resolvent: At the beginning.

Temur Kutsia Logic Programming


	Preliminaries
	Abstract Interpreter
	Choice Points

