
LOGIC PROGRAMMING

Rules
John likes all people

Could list all people
likes(john,alfred).

likes(john,bertrand).
likes(john,charles).
likes(john,david).

.

.

.

Rule is more Compact
John likes any object provided it is a person

Introduction 1

LOGIC PROGRAMMING

Rule Examples
Rules state Dependence

I use an umbrella
If

there is rain

Rules Define
X is a bird

If
X is an animal

and
X has feathers

Introduction 2

LOGIC PROGRAMMING

Formulating Rules

John likes anyone who likes wine

John likes any something if it likes wine

John likes X if X likes wine

Introduction 3

LOGIC PROGRAMMING

Rule Syntax

likes(john,X) :- likes(X,wine).

head body
rule delimitor

Introduction 4

LOGIC PROGRAMMING

Variable Scope

likes(john,X) :- likes(X,wine),

likes(X,food).

X’s Within Scope of Rule

instantiated here

checked here

returned here

Introduction 5

LOGIC PROGRAMMING

Royal Parents
Predicate

The parents of X are Y and Z
Y is the mother
Z is the father

Database
male(albert).

male(edward).

female(alice).

female(victoria).

parents(edward,victoria,albert).

parents(alice,victoria,albert).

Introduction 6

LOGIC PROGRAMMING

Sisters
X is a sister of Y if:

X is female
X has mother M and father F
Y has mother M and father F

Rule

sisters of(X,Y) :- female(X),

parents(X,M,F),

parents(Y,M,F).

Introduction 7

LOGIC PROGRAMMING

Scope
sister_of(X,Y) :-

female(X),
parents(X,M,F),
parents(Y,M,F).

Scope
only within body

of rule

Introduction 8

LOGIC PROGRAMMING

Sisters Question

sister_of(X,Y) :- female(X),
parents(X,M,F),
parents(Y,M,F).

Rule

Question

Y = edwardX = alice

female(alice),
parents(alice,M,F),
parents(edward,M,F).

New Goal

sister_of(X,Y)

sister_of(alice,edward).

Introduction 9

LOGIC PROGRAMMING

Sisters Question
female(alice),
parents(alice,M,F),
parents(edward,M,F).

New Goal

Database

yes
next goal

M = victoria, F = albert

parents(alice,victoria,albert)

next goal

parents(alice,M,F)

found yes,
goal satisfied

parents(edward,victoria,albert)

female(alice)

Introduction 10

LOGIC PROGRAMMING

Who is the Sister?

sister_of(X,Y) :- female(X),
parents(X,M,F),
parents(Y,M,F).

Rule

Question

Y = X (toplevel)X = alice

female(alice),
parents(alice,M,F),
parents(X,M,F).

New Goal

sister_of(X,Y)

sister_of(alice,X).

Different X’s

uninstantiated
variable

Introduction 11

LOGIC PROGRAMMING

Who is the Sister?
female(alice),
parents(alice,M,F),
parents(X,M,F).

New Goal

Database

yes
next goal

M = victoria, F = albert

parents(alice,victoria,albert)

next goal

parents(alice,M,F)

X = edward

parents(X,victoria,albert)

female(alice)

parents(edward,victoria,albert)

1

2

3

Introduction 12

LOGIC PROGRAMMING

Stealing
The Rule

A person may steal something
if

the person is a thief and he likes the thing

Prolog Rule
may steal(P,T) :- thief(P),likes(P,T).

Introduction 13

LOGIC PROGRAMMING

Example
$ cat thief.pro

thief(john).

likes(mary,food).

likes(mary,wine).

likes(john,X) :- likes(X,wine).

may_steal(X,Y):-thief(X),likes(X,Y).

$

Introduction 14

LOGIC PROGRAMMING

Example
$ pl

Welcome to SWI-Prolog (Multi-threaded, Version 5.2.6)

Copyright (c) 1990-2003 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- consult(’thief.pro’).

% thief.pro compiled 0.00 sec, 1,428 bytes

Yes

?- may_steal(john,X).

Introduction 15

LOGIC PROGRAMMING

X = mary ;

No

?-

Introduction 16

LOGIC PROGRAMMING

Function Trace
?- trace.

Yes

[trace] ?- may_steal(john,X).

+ 1 1 Call: may_steal(john,_G27) ?

+ 2 2 Call: thief(john) ?

+ 2 2 Exit: thief(john) ?

+ 3 2 Call: likes(john,_G27) ?

+ 4 3 Call: likes(_G27,wine) ?

+ 4 3 Exit: likes(mary,wine) ?

+ 3 2 Exit: likes(john,mary) ?

+ 1 1 Exit: may_steal(john,mary) ?

X = mary ? ;

Introduction 17

LOGIC PROGRAMMING

Redo
+ 1 1 Redo: may_steal(john,mary) ?

+ 3 2 Redo: likes(john,mary) ?

+ 4 3 Redo: likes(mary,wine) ?

+ 5 4 Call: likes(wine,wine) ?

+ 5 4 Fail: likes(wine,wine) ?

+ 4 3 Fail: likes(_G27,wine) ?

+ 3 2 Fail: likes(john,_G27) ?

+ 2 2 Redo: thief(john) ?

+ 2 2 Fail: thief(john) ?

+ 1 1 Fail: may_steal(john,_G27) ?

no

[debug] ?- halt.

$

Introduction 18

