Logic Programming Unification

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University of Linz, Austria kutsia@risc.uni-linz.ac.at

イロン 不同 とくほ とくほ とう

Temur Kutsia Logic Programming

<ロト <回 > < 注 > < 注 > 、

Unification algorithm: The heart of the computation model of logic programs.

ヘロト 人間 とくほとくほとう

■ のへで

Substitution

Definition (Substitution)

A substitution is a finite set of the form

$$\theta = \{v_1 \mapsto t_1, \ldots, v_n \mapsto t_n\}$$

- v_i's: distinct variables.
- t_i 's: terms with $t_i \neq v_i$.
- Binding: $v_i \mapsto t_i$.

イロト イポト イヨト イヨト

= 990

Substitution Application

Definition (Substitution application)

Substitution $\theta = \{v_1 \mapsto t_1, \dots, v_n \mapsto t_n\}$ applied to an expression *E*,

Eθ

(the *instance* of *E* wrt θ): Simultaneously replacing each occurrence of v_i in *E* with t_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Substitution Application

Example (Application)

$$E = p(x, y, f(a)).$$

$$\theta = \{x \mapsto b, y \mapsto x\}.$$

$$E\theta = p(b, x, f(a)).$$

Note that x was not replaced second time.

ヘロン ヘアン ヘビン ヘビン

Composition

Definition (Substitution Composition)

Given two substitutions

$$\theta = \{ \mathbf{v}_1 \mapsto \mathbf{t}_1, \dots, \mathbf{v}_n \mapsto \mathbf{t}_n \}$$

$$\sigma = \{ \mathbf{u}_1 \mapsto \mathbf{s}_1, \dots, \mathbf{u}_m \mapsto \mathbf{s}_m \},$$

their *composition* $\theta \sigma$ is obtained from the set

$$\{ \mathbf{V}_1 \mapsto \mathbf{t}_1 \sigma, \dots, \mathbf{V}_n \mapsto \mathbf{t}_n \sigma, \\ \mathbf{U}_1 \mapsto \mathbf{S}_1, \dots, \mathbf{U}_m \mapsto \mathbf{S}_m \}$$

by deleting

• all
$$u_i \mapsto s_i$$
's with $u_i \in \{v_1, \ldots, v_n\}$,

• all
$$v_i \mapsto t_i \sigma$$
's with $v_i = t_i \sigma$.

Substitution Composition

Example (Composition)

$$\theta = \{ \mathbf{x} \mapsto f(\mathbf{y}), \mathbf{y} \mapsto \mathbf{z} \}.$$

$$\sigma = \{ \mathbf{x} \mapsto \mathbf{a}, \mathbf{y} \mapsto \mathbf{b}, \mathbf{z} \mapsto \mathbf{y} \}.$$

$$\theta \sigma = \{ \mathbf{x} \mapsto f(\mathbf{b}), \mathbf{z} \mapsto \mathbf{y} \}.$$

Temur Kutsia Logic Programming

イロト 不得 とくほ とくほとう

æ

Empty Substitution

Empty substitution, denoted ε :

- Empty set of bindings.
- $E\varepsilon = E$ for all expressions E.

ヘロト 人間 ト ヘヨト ヘヨト

Properties

Theorem

 $\begin{aligned} \theta \varepsilon &= \varepsilon \theta = \theta. \\ (\boldsymbol{E} \theta) \sigma &= \boldsymbol{E}(\theta \sigma). \\ (\theta \sigma) \lambda &= \theta(\sigma \lambda). \end{aligned}$

Temur Kutsia Logic Programming

Example (Properties)

Example

Given:

$$\begin{aligned} \theta &= \{ \mathbf{x} \mapsto f(\mathbf{y}), \mathbf{y} \mapsto \mathbf{z} \}. \\ \sigma &= \{ \mathbf{x} \mapsto \mathbf{a}, \mathbf{z} \mapsto \mathbf{b} \}. \\ \mathbf{E} &= p(\mathbf{x}, \mathbf{y}, g(\mathbf{z})). \end{aligned}$$

Then

$$\begin{aligned} \theta \sigma &= \{ \mathbf{x} \mapsto f(\mathbf{y}), \mathbf{y} \mapsto \mathbf{b}, \mathbf{z} \mapsto \mathbf{b} \} \\ \mathbf{E} \theta &= p(f(\mathbf{y}), \mathbf{z}, \mathbf{g}(\mathbf{z})) \\ (\mathbf{E} \theta) \sigma &= p(f(\mathbf{y}), \mathbf{b}, \mathbf{g}(\mathbf{b})) \\ \mathbf{E}(\theta \sigma) &= p(f(\mathbf{y}), \mathbf{b}, \mathbf{g}(\mathbf{b})) . \end{aligned}$$

ш. *г*

Renaming Substitution

Definition (Renaming Substitution)

 $\{x_1 \mapsto y_1, \dots, x_n \mapsto y_n\}$ is a *renaming substitution* iff y_i 's are distinct variables.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Renaming an Expression

Definition (Renaming Substitution for an Expression)

Let V be the set of variables of an expression E.

A substitution

$$\theta = \{x_1 \mapsto y_1, \ldots, x_n \mapsto y_n\}$$

is a renaming substitution for E iff

• θ is a renaming substitution, and

•
$$\{x_1,\ldots,x_n\} \subseteq V$$
, and

•
$$(V \setminus \{x_1, \ldots, x_n\}) \cap \{y_1, \ldots, y_n\} = \emptyset.$$

< ロ > < 同 > < 三 > .

Definition (Variant)

Expression *E* and expression *F* are *variants* iff there exist substitutions θ and σ such that

•
$$F\sigma = E$$
.

ヘロト 人間 ト ヘヨト ヘヨト

Variants and Renaming

Theorem

Expression E and expression F are variants iff there exist renaming substitutions θ and σ such that

•
$$F\sigma = E$$
.

ヘロト ヘアト ヘビト ヘビト

Instantiation Quasi-Ordering

Definition (More General Substitution)

A substitution θ is *more general* than a substitution σ , written $\theta \leq \sigma$, iff there exists a substitution λ such that

 $\theta \lambda = \sigma.$

The relation \leq on substitutions is called the *instantiation quasi-ordering*.

ヘロン 人間 とくほ とくほ とう

Instantiation Quasi-Ordering

Example (More General)

Let θ and σ be the substitutions:

$$\theta = \{ \mathbf{x} \mapsto \mathbf{y}, \mathbf{u} \mapsto f(\mathbf{y}, \mathbf{z}) \},\$$

$$\sigma = \{ \mathbf{x} \mapsto \mathbf{z}, \mathbf{y} \mapsto \mathbf{z}, \mathbf{u} \mapsto f(\mathbf{z}, \mathbf{z}) \}.$$

Then $\theta \leq \sigma$ because $\theta \lambda = \sigma$ where

$$\lambda = \{ \mathbf{y} \mapsto \mathbf{z} \}.$$

Temur Kutsia Logic Programming

イロト イポト イヨト イヨト

Unifier

Definition (Unifier of Expressions)

A substitution θ is a *unifier* of expressions *E* and *F* iff

$$E\theta = F\theta.$$

Temur Kutsia Logic Programming

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Unifier

Example (Unifier of Expressions)

Let *E* and *F* be two expressions:

$$E = f(x, b, g(z)),$$

$$F = f(f(y), y, g(u)).$$

Then $\theta = \{ x \mapsto f(b), y \mapsto b, z \mapsto u \}$ is a unifier of *E* and *F*:

 $E\theta = f(f(b), b, g(u)),$ $F\theta = f(f(b), b, g(u)).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Unifier

Definition (Unifier of a Set of Expression Pairs)

 σ is a unifier of a set of expression pairs

$$\{\langle E_1, F_1 \rangle, \ldots, \langle E_n, F_n \rangle\}$$

iff σ is a unifier of E_i and F_i for each $1 \le i \le n$, i.e., iff

$$E_1 \sigma = F_1 \sigma,$$

...,
$$E_n \sigma = F_n \sigma$$

イロト イポト イヨト イヨト

Most General Unifier

Definition (MGU)

A unifier θ of *E* and *F* is most general iff θ is more general than any other unifier of *E* and *F*.

イロト 不得 トイヨト イヨト

Unifiers and MGU

Example (Unifiers)

Let *E* and *F* be two expressions:

E = f(x, b, g(z)),F = f(f(y), y, g(u)).

Unifiers of *E* and *F* (infinitely many):

. . .

$$\begin{aligned} \theta_1 &= \{ x \mapsto f(b), y \mapsto b, z \mapsto u \}, \\ \theta_2 &= \{ x \mapsto f(b), y \mapsto b, u \mapsto z \}, \\ \theta_3 &= \{ x \mapsto f(b), y \mapsto b, z \mapsto a, u \mapsto a \}, \\ \theta_4 &= \{ x \mapsto f(b), y \mapsto b, z \mapsto u, w \mapsto d \} \end{aligned}$$

Unifiers and MGU

Example (MGU)

Let *E* and *F* be expressions from the previous example:

$$E = f(x, b, g(z)), \ F = f(f(y), y, g(u)).$$

MGU's of E and F:

$$\begin{array}{l} \theta_1 = \{ x \mapsto f(b), y \mapsto b, z \mapsto u \}, \\ \theta_2 = \{ x \mapsto f(b), y \mapsto b, u \mapsto z \}. \end{array}$$

 $\begin{array}{ll} \theta_1 \leq \theta_2 & \quad \theta_2 = \theta_1 \lambda_1 \text{ with } \lambda_1 = \{ u \mapsto z \}. \\ \theta_2 \leq \theta_1 & \quad \theta_1 = \theta_2 \lambda_2 \text{ with } \lambda_2 = \{ z \mapsto u \}. \end{array}$

Note: λ_1 and λ_2 are renaming substitutions.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

ъ

Equivalence of mgu-s

Theorem

Most general unifier of two expressions is unique up to variable renaming

ヘロン ヘアン ヘビン ヘビン

Unification Algorithm

Rule-based approach.

• General form of rules:

$$\begin{array}{l} \mathsf{P}; \ \sigma \Longrightarrow \mathsf{Q}; \ \theta \ \text{ or } \\ \mathsf{P}; \ \sigma \Longrightarrow \bot. \end{array}$$

- \perp denotes failure.
- σ and θ are substitutions.
- *P* and *Q* are sets of expression pairs: $\{\langle E_1, F_1 \rangle, \dots, \langle E_n, F_n \rangle\}.$

ヘロト ヘアト ヘビト ヘビト

ъ

Unification Rules

Trivial:

$$\{\langle \mathbf{s}, \mathbf{s} \rangle\} \cup \mathbf{P}'; \ \sigma \Longrightarrow \mathbf{P}'; \ \sigma.$$

Decomposition:

$$\{ \langle f(\mathbf{s}_1, \dots, \mathbf{s}_n), f(t_1, \dots, t_n) \rangle \} \cup P'; \ \sigma \Longrightarrow \\ \{ \langle \mathbf{s}_1, t_1 \rangle, \dots, \langle \mathbf{s}_n, t_n \rangle \} \cup P'; \ \sigma.$$

if $f(s_1,\ldots,s_n) \neq f(t_1,\ldots,t_n)$.

Symbol Clash:

$$\{\langle f(s_1,\ldots,s_n), g(t_1,\ldots,t_m)\rangle\} \cup P'; \sigma \Longrightarrow \bot$$

if $f \neq g$.

ヘロト 人間 とくほとくほとう

= 900

Unification Rules (Contd.)

Orient:

$$\{\langle t, \mathbf{X} \rangle\} \cup \mathbf{P}'; \ \sigma \Longrightarrow \{\langle \mathbf{X}, \mathbf{t} \rangle\} \cup \mathbf{P}'; \ \sigma,$$

if t is not a variable.

Occurs Check:

$$\{\langle \mathbf{X}, \mathbf{t} \rangle\} \cup \mathbf{P}'; \ \sigma \Longrightarrow \bot,$$

if *x* occurs in *t* and $x \neq t$.

Variable Elimination:

$$\{\langle \mathbf{x}, \mathbf{t} \rangle\} \cup \mathbf{P}'; \ \sigma \Longrightarrow \mathbf{P}'\theta; \ \sigma\theta,$$

if *x* does not occur in *t*, and $\theta = \{x \mapsto t\}$.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Unification Algorithm

In order to unify expressions E_1 and E_2 :

- Create initial system $\{\langle E_1, E_2 \rangle\}; \varepsilon$.
- Apply successively unification rules.

くロト (過) (目) (日)

ъ

Termination

Theorem (Termination)

The unification algorithm terminates either with \perp or with \emptyset ; σ .

イロト 不得 とくほ とくほとう

Theorem (Soundness)

If P; $\varepsilon \Longrightarrow^+ \emptyset$; σ then σ is a unifier of P.

Completeness

Theorem (Completeness)

For any unifier θ of P the unification algorithm finds a unifier σ of P such that $\sigma \leq \theta$.

イロト イポト イヨト イヨト

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm computes their Mgu.

イロト イポト イヨト イヨト

Example (Failure)

Unify p(f(a), g(x)) and p(y, y).

$$\begin{array}{l} \{ \langle p(f(a), g(x)), p(y, y) \rangle \}; \ \varepsilon \Longrightarrow_{\mathsf{Dec}} \\ \{ \langle f(a), y \rangle, \langle g(x), y \rangle \}; \ \varepsilon \Longrightarrow_{\mathsf{Or}} \\ \{ \langle y, f(a) \rangle, \langle g(x), y \rangle \}; \ \varepsilon \Longrightarrow_{\mathsf{VarEl}} \\ \{ \langle g(x), f(a) \rangle \}; \ \{ y \mapsto f(a) \} \Longrightarrow_{\mathsf{SymCl}} \\ \bot \end{array}$$

ヘロト 人間 とくほとくほとう

E 990

Examples

Example (Success)

Unify p(a, x, h(g(z))) and p(z, h(y), h(y)).

$$\begin{split} &\{\langle p(a, x, h(g(z))), p(z, h(y), h(y))\rangle\}; \ \varepsilon \Longrightarrow_{\mathsf{Dec}} \\ &\{\langle a, z\rangle, \langle x, h(y)\rangle, \langle h(g(z)), h(y)\rangle\}; \ \varepsilon \Longrightarrow_{\mathsf{Or}} \\ &\{\langle z, a\rangle, \langle x, h(y)\rangle, \langle h(g(z)), h(y)\rangle\}; \ \varepsilon \Longrightarrow_{\mathsf{VarEl}} \\ &\{\langle x, h(y)\rangle, \langle h(g(a)), h(y)\rangle\}; \ \{z \mapsto a\} \Longrightarrow_{\mathsf{VarEl}} \\ &\{\langle h(g(a)), h(y)\rangle\}; \ \{z \mapsto a, x \mapsto h(y)\} \Longrightarrow_{\mathsf{Or}} \\ &\{\langle g(a), y\rangle\}; \ \{z \mapsto a, x \mapsto h(y)\} \Longrightarrow_{\mathsf{Or}} \\ &\{\langle y, g(a)\rangle\}; \ \{z \mapsto a, x \mapsto h(y)\} \Longrightarrow_{\mathsf{VarEl}} \\ &\emptyset; \ \{z \mapsto a, x \mapsto h(g(a)), y \mapsto g(a)\}. \end{split}$$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Example (Failure)

Unify p(x, x) and p(y, f(y)).

$$\begin{array}{l} \{ \langle \boldsymbol{p}(\boldsymbol{x}, \boldsymbol{x}), \boldsymbol{p}(\boldsymbol{y}, \boldsymbol{f}(\boldsymbol{y})) \rangle \}; \ \varepsilon \Longrightarrow_{\mathsf{Dec}} \\ \{ \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \langle \boldsymbol{x}, \boldsymbol{f}(\boldsymbol{y}) \rangle \}; \ \varepsilon \Longrightarrow_{\mathsf{VarEl}} \\ \{ \langle \boldsymbol{y}, \boldsymbol{f}(\boldsymbol{y}) \rangle \}; \ \{ \boldsymbol{x} \mapsto \boldsymbol{y} \} \Longrightarrow_{\mathsf{OccCh}} \\ \bot \end{array}$$

ヘロト 人間 とくほとくほとう

E 990

Previous Example on PROLOG

Example (Infinite Terms)

```
?-p(X,X)=p(Y,f(Y)).
```

```
X = f(f(f(f(f(f(f(f(f(...))))))))))
```

```
Y = f(f(f(f(f(f(f(f(f(...))))))))))
```

Yes

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Occurrence Check

PROLOG unification algorithm skips Occurrence Check.
Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to incorrect answers.

< 🗇 > < 🖻 > .

크 > 크

Occurrence Check

Example

less(X,s(X)).foo:-less(s(Y),Y).

?- foo.

Yes

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで