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Unification

Unification algorithm: The heart of the computation model of
logic programs.
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Substitution

Definition (Substitution)

A substitution is a finite set of the form

θ = {v1 7→ t1, . . . , vn 7→ tn}

vi ’s: distinct variables.

ti ’s: terms with ti 6= vi .

Binding: vi 7→ ti .
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Substitution Application

Definition (Substitution application)

Substitution θ = {v1 7→ t1, . . . , vn 7→ tn} applied to an
expression E ,

Eθ

(the instance of E wrt θ): Simultaneously replacing each
occurrence of vi in E with ti .
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Substitution Application

Example (Application)

E = p(x , y , f (a)).

θ = {x 7→ b, y 7→ x}.
Eθ = p(b, x , f (a)).

Note that x was not replaced second time.
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Composition

Definition (Substitution Composition)

Given two substitutions

θ = {v1 7→ t1, . . . , vn 7→ tn}
σ = {u1 7→ s1, . . . , um 7→ sm},

their composition θσ is obtained from the set

{v1 7→ t1σ, . . . , vn 7→ tnσ,

u1 7→ s1, . . . , um 7→ sm}

by deleting

all ui 7→ si ’s with ui ∈ {v1, . . . , vn},
all vi 7→ tiσ’s with vi = tiσ.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Substitution Composition

Example (Composition)

θ = {x 7→ f (y), y 7→ z}.
σ = {x 7→ a, y 7→ b, z 7→ y}.

θσ = {x 7→ f (b), z 7→ y}.
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Empty Substitution

Empty substitution, denoted ε:

Empty set of bindings.

Eε = E for all expressions E .
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Properties

Theorem

θε = εθ = θ.

(Eθ)σ = E(θσ).

(θσ)λ = θ(σλ).
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Example (Properties)

Example

Given:

θ = {x 7→ f (y), y 7→ z}.
σ = {x 7→ a, z 7→ b}.
E = p(x , y , g(z)).

Then

θσ = {x 7→ f (y), y 7→ b, z 7→ b}.
Eθ = p(f (y), z, g(z)).

(Eθ)σ = p(f (y), b, g(b)).

E(θσ) = p(f (y), b, g(b)).
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Renaming Substitution

Definition (Renaming Substitution)

{x1 7→ y1, . . . , xn 7→ yn} is a renaming substitution iff yi ’s are
distinct variables.
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Renaming an Expression

Definition (Renaming Substitution for an Expression)

Let V be the set of variables of an expression E .

A substitution
θ = {x1 7→ y1, . . . , xn 7→ yn}

is a renaming substitution for E iff

θ is a renaming substitution, and

{x1, . . . , xn} ⊆ V , and

(V \ {x1, . . . , xn}) ∩ {y1, . . . , yn} = ∅.
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Variants

Definition (Variant)

Expression E and expression F are variants iff there exist
substitutions θ and σ such that

Eθ = F and

Fσ = E .
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Variants and Renaming

Theorem

Expression E and expression F are variants iff there exist
renaming substitutions θ and σ such that

Eθ = F and

Fσ = E.
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Instantiation Quasi-Ordering

Definition (More General Substitution)

A substitution θ is more general than a substitution σ, written
θ ≤ σ, iff there exists a substitution λ such that

θλ = σ.

The relation ≤ on substitutions is called the instantiation
quasi-ordering.
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Instantiation Quasi-Ordering

Example (More General)

Let θ and σ be the substitutions:

θ = {x 7→ y , u 7→ f (y , z)},
σ = {x 7→ z, y 7→ z, u 7→ f (z, z)}.

Then θ ≤ σ because θλ = σ where

λ = {y 7→ z}.
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Unifier

Definition (Unifier of Expressions)

A substitution θ is a unifier of expressions E and F iff

Eθ = Fθ.
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Unifier

Example (Unifier of Expressions)

Let E and F be two expressions:

E = f (x , b, g(z)),

F = f (f (y), y , g(u)).

Then θ = {x 7→ f (b), y 7→ b, z 7→ u} is a unifier of E and F :

Eθ = f (f (b), b, g(u)),

Fθ = f (f (b), b, g(u)).
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Unifier

Definition (Unifier of a Set of Expression Pairs)

σ is a unifier of a set of expression pairs

{〈E1, F1〉, . . . , 〈En, Fn〉}

iff σ is a unifier of Ei and Fi for each 1 ≤ i ≤ n, i.e., iff

E1σ = F1σ,

· · · ,

Enσ = Fnσ
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Most General Unifier

Definition (MGU)

A unifier θ of E and F is most general iff θ is more general than
any other unifier of E and F .
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Unifiers and MGU

Example (Unifiers)

Let E and F be two expressions:

E = f (x , b, g(z)),

F = f (f (y), y , g(u)).

Unifiers of E and F (infinitely many):

θ1 = {x 7→ f (b), y 7→ b, z 7→ u},
θ2 = {x 7→ f (b), y 7→ b, u 7→ z},
θ3 = {x 7→ f (b), y 7→ b, z 7→ a, u 7→ a},
θ4 = {x 7→ f (b), y 7→ b, z 7→ u, w 7→ d},
· · ·
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Unifiers and MGU

Example (MGU)

Let E and F be expressions from the previous example:

E = f (x , b, g(z)), F = f (f (y), y , g(u)).

MGU’s of E and F :

θ1 = {x 7→ f (b), y 7→ b, z 7→ u},
θ2 = {x 7→ f (b), y 7→ b, u 7→ z}.

θ1 ≤ θ2: θ2 = θ1λ1 with λ1 = {u 7→ z}.
θ2 ≤ θ1: θ1 = θ2λ2 with λ2 = {z 7→ u}.

Note: λ1 and λ2 are renaming substitutions.
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Equivalence of mgu-s

Theorem

Most general unifier of two expressions is unique up to variable
renaming
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Unification Algorithm

Rule-based approach.

General form of rules:

P; σ =⇒ Q; θ or

P; σ =⇒ ⊥.

⊥ denotes failure.

σ and θ are substitutions.

P and Q are sets of expression pairs:
{〈E1, F1〉, . . . , 〈En, Fn〉}.
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Unification Rules

Trivial:
{〈s, s〉} ∪ P ′; σ =⇒ P ′; σ.

Decomposition:

{〈f (s1, . . . , sn), f (t1, . . . , tn)〉} ∪ P ′; σ =⇒
{〈s1, t1〉, . . . , 〈sn, tn〉} ∪ P ′; σ.

if f (s1, . . . , sn) 6= f (t1, . . . , tn).

Symbol Clash:

{〈f (s1, . . . , sn), g(t1, . . . , tm)〉} ∪ P ′; σ =⇒ ⊥.

if f 6= g.
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Unification Rules (Contd.)

Orient:

{〈t , x〉} ∪ P ′; σ =⇒ {〈x , t〉} ∪ P ′; σ,

if t is not a variable.

Occurs Check:

{〈x , t〉} ∪ P ′; σ =⇒ ⊥,

if x occurs in t and x 6= t .

Variable Elimination:

{〈x , t〉} ∪ P ′; σ =⇒ P ′θ; σθ,

if x does not occur in t , and θ = {x 7→ t}.
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Unification Algorithm

In order to unify expressions E1 and E2:
1 Create initial system {〈E1, E2〉}; ε.
2 Apply successively unification rules.
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Termination

Theorem (Termination)

The unification algorithm terminates either with ⊥ or with ∅;σ.
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Soundness

Theorem (Soundness)

If P; ε =⇒+ ∅; σ then σ is a unifier of P.
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Completeness

Theorem (Completeness)

For any unifier θ of P the unification algorithm finds a unifier σ
of P such that σ ≤ θ.
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Major Result

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm
computes their MGU.
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Examples

Example (Failure)

Unify p(f (a), g(x)) and p(y , y).

{〈p(f (a), g(x)), p(y , y)〉}; ε =⇒Dec

{〈f (a), y〉, 〈g(x), y〉}; ε =⇒Or

{〈y , f (a)〉, 〈g(x), y〉}; ε =⇒VarEl

{〈g(x), f (a)〉}; {y 7→ f (a)} =⇒SymCl

⊥
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Examples

Example (Success)

Unify p(a, x , h(g(z))) and p(z, h(y), h(y)).

{〈p(a, x , h(g(z))), p(z, h(y), h(y))〉}; ε =⇒Dec

{〈a, z〉, 〈x , h(y)〉, 〈h(g(z)), h(y)〉}; ε =⇒Or

{〈z, a〉, 〈x , h(y)〉, 〈h(g(z)), h(y)〉}; ε =⇒VarEl

{〈x , h(y)〉, 〈h(g(a)), h(y)〉}; {z 7→ a} =⇒VarEl

{〈h(g(a)), h(y)〉}; {z 7→ a, x 7→ h(y)} =⇒Dec

{〈g(a), y〉}; {z 7→ a, x 7→ h(y)} =⇒Or

{〈y , g(a)〉}; {z 7→ a, x 7→ h(y)} =⇒VarEl

∅; {z 7→ a, x 7→ h(g(a)), y 7→ g(a)}.
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Examples

Example (Failure)

Unify p(x , x) and p(y , f (y)).

{〈p(x , x), p(y , f (y))〉}; ε =⇒Dec

{〈x , y〉, 〈x , f (y)〉}; ε =⇒VarEl

{〈y , f (y)〉}; {x 7→ y} =⇒OccCh

⊥
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Previous Example on PROLOG

Example (Infinite Terms)
?- p(X,X)=p(Y,f(Y)).

X = f(f(f(f(f(f(f(f(f(f(...))))))))))

Y = f(f(f(f(f(f(f(f(f(f(...))))))))))

Yes
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Occurrence Check

PROLOG unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.

Justification: Most of the time this rule is not needed.

Drawback: Sometimes might lead to incorrect answers.
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Occurrence Check

Example
less(X,s(X)).
foo:-less(s(Y),Y).

?- foo.

Yes
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