
Substitutions
Unifiers

Unification Algorithm

Logic Programming
Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Contents

1 Substitutions

2 Unifiers

3 Unification Algorithm

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unification

Unification algorithm: The heart of the computation model of
logic programs.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Substitution

Definition (Substitution)

A substitution is a finite set of the form

θ = {v1 7→ t1, . . . , vn 7→ tn}

vi ’s: distinct variables.

ti ’s: terms with ti 6= vi .

Binding: vi 7→ ti .

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Substitution Application

Definition (Substitution application)

Substitution θ = {v1 7→ t1, . . . , vn 7→ tn} applied to an
expression E ,

Eθ

(the instance of E wrt θ): Simultaneously replacing each
occurrence of vi in E with ti .

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Substitution Application

Example (Application)

E = p(x , y , f (a)).

θ = {x 7→ b, y 7→ x}.
Eθ = p(b, x , f (a)).

Note that x was not replaced second time.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Composition

Definition (Substitution Composition)

Given two substitutions

θ = {v1 7→ t1, . . . , vn 7→ tn}
σ = {u1 7→ s1, . . . , um 7→ sm},

their composition θσ is obtained from the set

{v1 7→ t1σ, . . . , vn 7→ tnσ,

u1 7→ s1, . . . , um 7→ sm}

by deleting

all ui 7→ si ’s with ui ∈ {v1, . . . , vn},
all vi 7→ tiσ’s with vi = tiσ.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Substitution Composition

Example (Composition)

θ = {x 7→ f (y), y 7→ z}.
σ = {x 7→ a, y 7→ b, z 7→ y}.

θσ = {x 7→ f (b), z 7→ y}.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Empty Substitution

Empty substitution, denoted ε:

Empty set of bindings.

Eε = E for all expressions E .

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Properties

Theorem

θε = εθ = θ.

(Eθ)σ = E(θσ).

(θσ)λ = θ(σλ).

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Example (Properties)

Example

Given:

θ = {x 7→ f (y), y 7→ z}.
σ = {x 7→ a, z 7→ b}.
E = p(x , y , g(z)).

Then

θσ = {x 7→ f (y), y 7→ b, z 7→ b}.
Eθ = p(f (y), z, g(z)).

(Eθ)σ = p(f (y), b, g(b)).

E(θσ) = p(f (y), b, g(b)).

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Renaming Substitution

Definition (Renaming Substitution)

{x1 7→ y1, . . . , xn 7→ yn} is a renaming substitution iff yi ’s are
distinct variables.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Renaming an Expression

Definition (Renaming Substitution for an Expression)

Let V be the set of variables of an expression E .

A substitution
θ = {x1 7→ y1, . . . , xn 7→ yn}

is a renaming substitution for E iff

θ is a renaming substitution, and

{x1, . . . , xn} ⊆ V , and

(V \ {x1, . . . , xn}) ∩ {y1, . . . , yn} = ∅.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Variants

Definition (Variant)

Expression E and expression F are variants iff there exist
substitutions θ and σ such that

Eθ = F and

Fσ = E .

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Variants and Renaming

Theorem

Expression E and expression F are variants iff there exist
renaming substitutions θ and σ such that

Eθ = F and

Fσ = E.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Instantiation Quasi-Ordering

Definition (More General Substitution)

A substitution θ is more general than a substitution σ, written
θ ≤ σ, iff there exists a substitution λ such that

θλ = σ.

The relation ≤ on substitutions is called the instantiation
quasi-ordering.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Instantiation Quasi-Ordering

Example (More General)

Let θ and σ be the substitutions:

θ = {x 7→ y , u 7→ f (y , z)},
σ = {x 7→ z, y 7→ z, u 7→ f (z, z)}.

Then θ ≤ σ because θλ = σ where

λ = {y 7→ z}.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unifier

Definition (Unifier of Expressions)

A substitution θ is a unifier of expressions E and F iff

Eθ = Fθ.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unifier

Example (Unifier of Expressions)

Let E and F be two expressions:

E = f (x , b, g(z)),

F = f (f (y), y , g(u)).

Then θ = {x 7→ f (b), y 7→ b, z 7→ u} is a unifier of E and F :

Eθ = f (f (b), b, g(u)),

Fθ = f (f (b), b, g(u)).

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unifier

Definition (Unifier of a Set of Expression Pairs)

σ is a unifier of a set of expression pairs

{〈E1, F1〉, . . . , 〈En, Fn〉}

iff σ is a unifier of Ei and Fi for each 1 ≤ i ≤ n, i.e., iff

E1σ = F1σ,

· · · ,

Enσ = Fnσ

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Most General Unifier

Definition (MGU)

A unifier θ of E and F is most general iff θ is more general than
any other unifier of E and F .

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unifiers and MGU

Example (Unifiers)

Let E and F be two expressions:

E = f (x , b, g(z)),

F = f (f (y), y , g(u)).

Unifiers of E and F (infinitely many):

θ1 = {x 7→ f (b), y 7→ b, z 7→ u},
θ2 = {x 7→ f (b), y 7→ b, u 7→ z},
θ3 = {x 7→ f (b), y 7→ b, z 7→ a, u 7→ a},
θ4 = {x 7→ f (b), y 7→ b, z 7→ u, w 7→ d},
· · ·

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unifiers and MGU

Example (MGU)

Let E and F be expressions from the previous example:

E = f (x , b, g(z)), F = f (f (y), y , g(u)).

MGU’s of E and F :

θ1 = {x 7→ f (b), y 7→ b, z 7→ u},
θ2 = {x 7→ f (b), y 7→ b, u 7→ z}.

θ1 ≤ θ2: θ2 = θ1λ1 with λ1 = {u 7→ z}.
θ2 ≤ θ1: θ1 = θ2λ2 with λ2 = {z 7→ u}.

Note: λ1 and λ2 are renaming substitutions.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Equivalence of mgu-s

Theorem

Most general unifier of two expressions is unique up to variable
renaming

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unification Algorithm

Rule-based approach.

General form of rules:

P; σ =⇒ Q; θ or

P; σ =⇒ ⊥.

⊥ denotes failure.

σ and θ are substitutions.

P and Q are sets of expression pairs:
{〈E1, F1〉, . . . , 〈En, Fn〉}.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unification Rules

Trivial:
{〈s, s〉} ∪ P ′; σ =⇒ P ′; σ.

Decomposition:

{〈f (s1, . . . , sn), f (t1, . . . , tn)〉} ∪ P ′; σ =⇒
{〈s1, t1〉, . . . , 〈sn, tn〉} ∪ P ′; σ.

if f (s1, . . . , sn) 6= f (t1, . . . , tn).

Symbol Clash:

{〈f (s1, . . . , sn), g(t1, . . . , tm)〉} ∪ P ′; σ =⇒ ⊥.

if f 6= g.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unification Rules (Contd.)

Orient:

{〈t , x〉} ∪ P ′; σ =⇒ {〈x , t〉} ∪ P ′; σ,

if t is not a variable.

Occurs Check:

{〈x , t〉} ∪ P ′; σ =⇒ ⊥,

if x occurs in t and x 6= t .

Variable Elimination:

{〈x , t〉} ∪ P ′; σ =⇒ P ′θ; σθ,

if x does not occur in t , and θ = {x 7→ t}.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Unification Algorithm

In order to unify expressions E1 and E2:
1 Create initial system {〈E1, E2〉}; ε.
2 Apply successively unification rules.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Termination

Theorem (Termination)

The unification algorithm terminates either with ⊥ or with ∅;σ.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Soundness

Theorem (Soundness)

If P; ε =⇒+ ∅; σ then σ is a unifier of P.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Completeness

Theorem (Completeness)

For any unifier θ of P the unification algorithm finds a unifier σ
of P such that σ ≤ θ.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Major Result

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm
computes their MGU.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Examples

Example (Failure)

Unify p(f (a), g(x)) and p(y , y).

{〈p(f (a), g(x)), p(y , y)〉}; ε =⇒Dec

{〈f (a), y〉, 〈g(x), y〉}; ε =⇒Or

{〈y , f (a)〉, 〈g(x), y〉}; ε =⇒VarEl

{〈g(x), f (a)〉}; {y 7→ f (a)} =⇒SymCl

⊥

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Examples

Example (Success)

Unify p(a, x , h(g(z))) and p(z, h(y), h(y)).

{〈p(a, x , h(g(z))), p(z, h(y), h(y))〉}; ε =⇒Dec

{〈a, z〉, 〈x , h(y)〉, 〈h(g(z)), h(y)〉}; ε =⇒Or

{〈z, a〉, 〈x , h(y)〉, 〈h(g(z)), h(y)〉}; ε =⇒VarEl

{〈x , h(y)〉, 〈h(g(a)), h(y)〉}; {z 7→ a} =⇒VarEl

{〈h(g(a)), h(y)〉}; {z 7→ a, x 7→ h(y)} =⇒Dec

{〈g(a), y〉}; {z 7→ a, x 7→ h(y)} =⇒Or

{〈y , g(a)〉}; {z 7→ a, x 7→ h(y)} =⇒VarEl

∅; {z 7→ a, x 7→ h(g(a)), y 7→ g(a)}.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Examples

Example (Failure)

Unify p(x , x) and p(y , f (y)).

{〈p(x , x), p(y , f (y))〉}; ε =⇒Dec

{〈x , y〉, 〈x , f (y)〉}; ε =⇒VarEl

{〈y , f (y)〉}; {x 7→ y} =⇒OccCh

⊥

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Previous Example on PROLOG

Example (Infinite Terms)
?- p(X,X)=p(Y,f(Y)).

X = f(f(f(f(f(f(f(f(f(f(...))))))))))

Y = f(f(f(f(f(f(f(f(f(f(...))))))))))

Yes

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Occurrence Check

PROLOG unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.

Justification: Most of the time this rule is not needed.

Drawback: Sometimes might lead to incorrect answers.

Temur Kutsia Logic Programming



Substitutions
Unifiers

Unification Algorithm

Occurrence Check

Example
less(X,s(X)).
foo:-less(s(Y),Y).

?- foo.

Yes

Temur Kutsia Logic Programming


	Substitutions
	Unifiers
	Unification Algorithm

