\qquad

Studienkennzahl: \qquad

Matrikelnummer: \qquad

Final Exam
Computer Algebra (326.017)
(1) Consider the ring $R:=\mathbb{Z}[\sqrt{-3}]=\{a+b \sqrt{-3} \mid a, b \in \mathbb{Z}\}$ (a subring of \mathbb{C}) with the usual addition and multiplication. Moreover, consider the function $\phi(a+b \sqrt{-3})=a^{2}+3 b^{2}$ from R into \mathbb{N}. Show:
(i) $\phi(u \cdot v)=\phi(u) \cdot \phi(v)$;
(ii) R is an integral domain;
(iii) the elements $2,1 \pm \sqrt{-3}$ are irreducible;
(iv) R ist not a unique factorization domain.
(2) Suppose $f(x, y) \in \mathbb{Q}[x, y]$ has the irreducible factors f_{i} with multiplicities e_{i}, i.e.

$$
f(x, y)=\prod_{i=1}^{r} f_{i}(x, y)^{e_{i}}
$$

(i) Show that

$$
\operatorname{gcd}\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\prod_{i=1}^{r} f_{i}(x, y)^{e_{i}-1}
$$

(ii) How can one test whether a polynomial in $\mathbb{Q}[x, y]$ is square-free?
(3) Prove Fermat's Little Theorem, i.e.: If p is a prime number and \mathbb{Z}_{p} is the field with p elements, then for every non-zero $a \in \mathbb{Z}_{p}($ so $a \neq 0)$ we have $a^{p-1}=1$.
(4) (i) Prove that $x^{2}+x+2$ is irreducible in $\mathbb{Z}_{3}[x]$
(ii) Construct explicitly the finite field with 9 elements.
(5) (i) Let R be a commutative ring with identity 1 . What is an ideal in R ?
(ii) A commutative ring with 1 is Noetherian iff there is no infinite strictly increasing chain of ideals of the form $I_{1} \subset I_{2} \subset \cdots \subset R$.
Give an example of a non-Noetherian commutative ring with 1.
(6) Let $a(x)=a_{2} x^{2}+a_{1} x+a_{0}$ and $b(x)=b_{2} x^{2}+b_{1} x+b_{0}$ be quadratic polynomials over a field K. Let $c(x)=c_{1} x+c_{0}$ (with $c_{1} \neq 0$) be the remainder on division of a by b, i.e. $c(x)=\operatorname{rem}(a, b)$. Prove:

$$
\operatorname{resultant}_{x}(a, b)=b_{2} \cdot \operatorname{resultant}_{x}(c, b) .
$$

(Hint: Consider the corresponding Sylvester matrices. Relate division of polynomials to elementary row operations on the Sylvester matrix.)

