## to be prepared for 10th October

Exercise 1. Consider the polynom

$$
f=x^{5}-x^{4}+x^{3}-x^{2}+x-2
$$

1. Compute the zeros of $f$ numerically. You have influence on floating point precision, if you want to.
2. Generate a picture of the graph of the polynomial function $x \mapsto f(x)$ on an interval $[a, b]$. Choose $a$ and $b$ in such a way that you can 'see' the real zeros of $f$.
3. Compute the zeros of $f$ symbolically. Which output comes from your computer algebra system?
4. Compute the zeros of the polynomial

$$
f=2 x^{2}+2 x^{3}+2 x^{4}+x^{5}-x^{6}+3 x+1
$$

Exercise 2. Use a computer algebra system of your choice to compute the formal sums

$$
\sum_{i=1}^{n} i^{3} \text { and } \sum_{i=1}^{n} i^{4}
$$

## Exercise 3.

1. Compute the integral $\int_{0}^{1} \sin \left(x^{2}\right) d x$.
2. Compute the indefinite integral $\int \sin \left(x^{2}\right) d x$.

Exercise 4. Produce a picture of the following surfaces.

1. $z=x^{2} \sin \left(y^{2}\right)$
2. $x=\cos (s t), y=s \sin (t+\pi), z=t$.

Exercise 5. Given the matrix

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 3 & 4
\end{array}\right)
$$

Compute all solutions of the linear system $A\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{T}=(1,2,3,4,5)^{T}$. Do it with the aid of a computer algebra system of your choice.

