to be prepared for Januar 9

Exercise 42. Use resultants to find the implicit representation, i.e. a polynomial equation just in x, y, and z of the parametrized surface

$$
\begin{aligned}
& x=1+s+t+s t \\
& y=2+s+s t+t^{2} \\
& z=s+t+s^{2}
\end{aligned}
$$

Exercise 43. Let I be a unique factorization domain, $f, g \in I[x]$ with $\operatorname{deg}(f)>$ $0, \operatorname{deg}(g)>0$. Show that there are polynomials $a, b \in I[x] \backslash 0$ such that $\operatorname{res}(f, g)=$ $a f+b g$.

Exercise 44. Let $f, g \in k[x]$ be polynomials whose roots are $\zeta_{1}, \ldots, \zeta_{m}$ and $\eta_{1}, \ldots, \eta_{n}$ respectively. Prove that

$$
\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} L C(g)^{\operatorname{deg}(f)} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\zeta_{i}-\eta_{j}\right)
$$

Exercise 45. Compute the factorization in $\mathrm{GF}(27)[x]$ of the squarefree polynomial
$x^{10}+\left(1+\alpha^{2}+\alpha\right) x^{9}+\left(2 \alpha+\alpha^{2}+1\right) x^{7}+\left(2 \alpha^{2}+2\right) x^{6}+\left(\alpha+\alpha^{2}\right) x^{4}+\left(2+2 \alpha+\alpha^{2}\right) x^{3}+\left(1+\alpha^{2}+\alpha\right) x^{2}+(1+\alpha) x+1+\alpha$ into irreducible factors, where α is a root of the polynomial $1-x+x^{3} \in \mathbb{Z}_{3}[x]$.

Exercise 46. Compute the factorization of the polynomial

$$
\begin{aligned}
& x^{19}+14 x^{18}+23 x^{17}+3 x^{16}+22 x^{15}+25 x^{14}+27 x^{13}+22 x^{12}+58 x^{11}+38 x^{10}+ \\
& +42 x^{9}+74 x^{8}+55 x^{7}+68 x^{6}+62 x^{5}+38 x^{4}+39 x^{3}+18 x^{2}+7 x+4
\end{aligned}
$$

into irreducibles in $\mathbb{Z}[x]$ by the modular method.

