to be prepared for Januar 9

Exercise 42. Use resultants to find the implicit representation, i.e. a polynomial equation just in x, y, and z of the parametrized surface

$$\begin{array}{rcl} x & = & 1+s+t+st \\ y & = & 2+s+st+t^2 \\ z & = & s+t+s^2 \end{array}$$

Exercise 43. Let I be a unique factorization domain, $f, g \in I[x]$ with $\deg(f) > 0$, $\deg(g) > 0$. Show that there are polynomials $a, b \in I[x] \setminus 0$ such that $\operatorname{res}(f, g) = af + bg$.

Exercise 44. Let $f, g \in k[x]$ be polynomials whose roots are ζ_1, \ldots, ζ_m and η_1, \ldots, η_n respectively. Prove that

$$\operatorname{res}_{x}(f,g) = LC(f)^{\operatorname{deg}(g)}LC(g)^{\operatorname{deg}(f)}\prod_{i=1}^{m}\prod_{j=1}^{n}(\zeta_{i}-\eta_{j})$$

Exercise 45. Compute the factorization in GF(27)[x] of the squarefree polynomial

$$x^{10} + (1 + \alpha^2 + \alpha)x^9 + (2\alpha + \alpha^2 + 1)x^7 + (2\alpha^2 + 2)x^6 + (\alpha + \alpha^2)x^4 + (2 + 2\alpha + \alpha^2)x^3 + (1 + \alpha^2 + \alpha)x^2 + (1 + \alpha)x + 1 + \alpha^2 + \alpha^2$$

into irreducible factors, where α is a root of the polynomial $1 - x + x^3 \in \mathbb{Z}_3[x]$.

Exercise 46. Compute the factorization of the polynomial

$$x^{19} + 14x^{18} + 23x^{17} + 3x^{16} + 22x^{15} + 25x^{14} + 27x^{13} + 22x^{12} + 58x^{11} + 38x^{10} + 42x^9 + 74x^8 + 55x^7 + 68x^6 + 62x^5 + 38x^4 + 39x^3 + 18x^2 + 7x + 4$$

into irreducibles in $\mathbb{Z}[x]$ by the modular method.