to be prepared for Januar 16

Exercise 47. Consider polyomials $f, g \in k[x]$ of positive degrees m, n respectively. Let I denote the ideal in $k[x]$ generated by f, and let μ denote the multiplication map

$$
\mu: k[x] / I \longrightarrow k[x] / I, \quad h+I \mapsto g h+I
$$

Demonstrate that $\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} \operatorname{det}(\mu)$.
Exercise 48. Let $f, g \in k[x]$ be polynomials whose roots are $\zeta_{1}, \ldots, \zeta_{m}$ and $\eta_{1}, \ldots, \eta_{n}$ respectively. Prove that

$$
\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} L C(g)^{\operatorname{deg}(f)} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\zeta_{i}-\eta_{j}\right)
$$

Exercise 49. Use Gröbner bases for solving over \mathbb{C} :

$$
\begin{aligned}
f_{1}(x, y, z) & =x z-x y^{2}-4 x^{2}-\frac{1}{4}=0 \\
f_{2}(x, y, z) & =y^{2} z+2 x+\frac{1}{2}=0 \\
f_{3}(x, y, z) & =x^{2} z+y^{2}+\frac{1}{2} x=0
\end{aligned}
$$

Exercise 50. Consider the polynomials

$$
\begin{aligned}
& f_{1}(x, y)=x^{2} y+x y+1 \\
& f_{2}(x, y)=y^{2}+x+y
\end{aligned}
$$

in $\mathbb{Z}_{3}[x, y]$. Compute a Gröbner basis for the ideal $\left\langle f_{1}, f_{2}\right\rangle$ w.r.t. the graduated lexicographical ordering with $x<y$. Show intermediate results.

Exercise 51. Use Gröbner bases to find the implicit representation of the parametrized surface

$$
\begin{aligned}
& x=1+s+t+s t \\
& y=2+s+s t+t^{2} \\
& z=s+t+s^{2}
\end{aligned}
$$

