to be prepared for Januar 23

Exercise 52. Generalize the notion of norm to multivariate polynomials. In analogy to chapter 5.4, describe the basic notion of a multivariate norm.

Exercise 53. According to Theorem 4.3.3 a solution of $\operatorname{res}_{x_r}(a, b) = 0$ can be extended to a common zero of a and b, in case the leading coefficient of a or b is a nonzero constant. This can be achieved by a suitable change of coordinates. Work out an algorithm for solving systems of algebraic equations by resultants along these lines.

Exercise 54.

- 1. Explain why the Euclidean algorithm can be considered as a special case of Gröbner base algorithm.
- 2. Considering a system of linear equations in indeterminates x_1, \ldots, x_n , discuss the relation between Gauss elimination and Gröbner bases.

Exercise 55. Study the literature (e.g. on Gröbner bases) and try to find an algorithmic answer to the following problem: Given two ideals $I, J \subseteq k[x_1, \ldots, x_n]$ in terms of generators $I = \langle f_1, \ldots, f_r \rangle$, $J = \langle g_1, \ldots, g_s \rangle$, find generators of the intersection $I \cap J$.

Exercise 56. Prove the following theorem.

Let $F \subseteq k[x_1, \ldots, x_n]$. The ideal congruence modulo $\langle F \rangle$ equals the reflexivetransitive-symmetric closure of the reduction relation \longrightarrow_F , i.e., $\equiv_{\langle F \rangle} = \longleftrightarrow_F^*$.