to be prepared for 24 th October

Exercise 11. Compute the pseudo-quotient $q(x)$ and the pseudo-remainder $r(x)$ for the two integral polynomials

$$
\begin{aligned}
u(x) & =x^{6}+x^{5}-x^{4}+2 x^{3}+3 x^{2}-x+2 \quad \text { and } \\
v(x) & =2 x^{3}+2 x^{2}-x+3
\end{aligned}
$$

Exercise 12. Let R be an integral domain, $a, b \in R[x], b \neq 0, m=\operatorname{deg}(a) \geq$ $n=\operatorname{deg}(b), \alpha, \beta \in R$. Prove:

$$
\begin{aligned}
\operatorname{pquot}(\alpha a, \beta b) & =\beta^{m-n} \alpha \cdot \operatorname{pquot}(a, b) \quad \text { and } \\
\operatorname{prem}(\alpha a, \beta b) & =\beta^{m-n+1} \alpha \cdot \operatorname{prem}(a, b) .
\end{aligned}
$$

Exercise 13. Choose two different irreducible polynomials for constructing the Galois field $G F\left(2^{3}\right)$ in two essentially different ways. Demonstrate that your resulting fields are actually isomorphic.

Exercise 14. Let R be a ring of prime characteristic p and $a, b \in R$. Prove:

$$
\begin{aligned}
(a+b)^{p} & =a^{p}+b^{p} \\
(a+b)^{p^{n}} & =a^{p^{n}}+b^{p^{n}}, \text { for } n \in \mathbb{N} .
\end{aligned}
$$

Exercise 15. Prove the following statement. If k is a finite field then k is a simple extension of some \mathbb{Z}_{p}.

