to be prepared for 31 th October

Exercise 16. Prove the following statement (Theorem 2.2.2)
Let R be an integral domain, $a(x), b(x) \in R[x], b \neq 0$, and $m=\operatorname{deg}(a) \geq n=$ $\operatorname{deg}(b)$. There are uniquely defined polynomials $q(x), r(x) \in R[x]$ such that

$$
\begin{aligned}
& \operatorname{lc}(b)^{m-n+1} \cdot a(x)=q(x) \cdot b(x)+r(x) \quad \text { and } \\
& r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(b) .
\end{aligned}
$$

Exercise 17. Let $\mathbb{Z}_{5}(\alpha)$ be the algebraic extension of \mathbb{Z}_{5} by a root α of the irreducible polynomial $x^{5}+4 x+1$. Compute the normal representation of $(a b) / c$, where $a=\alpha^{3}+\alpha+2, b=3 \alpha^{4}+2 \alpha^{2}+4 \alpha, c=2 \alpha^{4}+\alpha^{3}+2 \alpha+1$.

Exercise 18. Let R be commutative ring, $R[x]$ the corresponding polynomial ring. Proof that $R[x]$ is a Euclidean domain if and only if R is a field.

Exercise 19. Solve the Chinese remainder problem

$$
\begin{array}{ccc}
r \equiv & 62 & \bmod 79 \\
r \equiv & 66 & \bmod 83 \\
r \equiv & 72 & \bmod 89
\end{array}
$$

over the integers both by the Lagrange and by the Newton method.
Exercise 20. Solve the Chinese remainder problem

$$
\begin{array}{ccc}
r(x) \equiv & 7 x-2 & \bmod x^{2}+x-1 \\
r(x) \equiv & 11 x+8 & \bmod x^{2}-x-1 \\
r(x) \equiv & -3 x & \bmod x^{2}+x+1
\end{array}
$$

over $\mathbb{Q}[x]$ by the Lagrange and by the Newton method.

