to be prepared for 7th November

Exercise 21. Consider the ring \mathbb{Z} of integers and an ideal I generated by finitely many numbers a_{1}, \ldots, a_{n}. As \mathbb{Z} is a principal ideal domain there must be a single generator b for I.

1. Describe a procedure for finding b when arbitrary generators a_{1}, \ldots, a_{n} of I are given as an input.
2. Compute a single generator for the ideal $I=\langle 33600,784080,214500\rangle$.

Exercise 22. Consider the polynomials $U(x), V(x)$ computed by the extended Euclidean algorithm for the input polynomials $u(x), v(x)$ over \mathbb{Q}, i.e., $\operatorname{gcd}(u, v)=$ $U u+V v$. Prove that, if $u=x^{m}-1$ and $v=x^{n}-1$, then the extended Euclidean algorithm provides polynomials U, V with integer coefficients. Find U and V when $u=x^{23}-1$ and $v=x^{18}-1$.

Exercise 23. For $m \in \mathbb{Z}$ let \mathbb{Z}_{m} denote the group $\mathbb{Z} / m \mathbb{Z}$. Prove the following statement:

$$
\text { If } k, n \in \mathbb{Z} \text { are relatively prime then } \mathbb{Z}_{k n} \cong \mathbb{Z}_{k} \oplus \mathbb{Z}_{n}
$$

Exercise 24. Consider the two polynomials over \mathbb{Z}

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2 .
\end{aligned}
$$

Compute $\operatorname{gcd}(f(x), g(x))$

1. by passing to the quotient field;
2. by a polynomial remainder sequence.

Exercise 25. Consider the bivariate polynomials

$$
\begin{aligned}
& f(x, y)=x^{2} y^{3}-5 x y^{3}+6 y^{3}-6 x y^{2}+18 y^{2}+2 x y-4 y-12 \\
& g(x, y)=x^{2} y^{3}+3 x y^{3}-10 y^{3}-6 x y^{2}-30 y^{2}-4 x y+8 y+24 .
\end{aligned}
$$

Compute the gcd of f and g by the modular algorithm. Take care of leading coefficients.

