to be prepared for November 29

Exercise 31. Let I be a unique factorization domain, and $f, g \in I[x]$. Write $f \sim g$ if there is a unit ε with $g=\varepsilon f$. Prove the following:

1. $\operatorname{cont}(f g) \sim \operatorname{cont} \cdot(f) \operatorname{cont}(g)$
2. $\operatorname{pp}(f g) \sim \operatorname{pp}(f) \cdot \operatorname{pp}(g)$

Exercise 32. Let $a(x)$ be a primitive polynomial with integer coefficients, and assume that $a(x)$ is squarefree. Prove that there are only finitely many primes p such that $a(x)$ is not squarefree modulo p.

Exercise 33. Try to derive an algorithm for producing the squarefree decomposition in the field $\mathbb{Z}_{p}[x], p$ a prime.

Exercise 34. After producing squarefree factors apply Berlekamp's algorithm for computing the complete factorization in \mathbb{Z}_{5} of

$$
x^{7}+4 x^{6}+2 x^{5}+4 x^{3}+3 x^{2}+4 x+2 .
$$

Exercise 35. Give an example of a polynomial $f \in k[x]$ that is irreducible with multiple roots.

