to be prepared for November 29

Exercise 31. Let *I* be a unique factorization domain, and $f, g \in I[x]$. Write $f \sim g$ if there is a unit ε with $g = \varepsilon f$. Prove the following:

- 1. $\operatorname{cont}(fg) \sim \operatorname{cont} \cdot (f) \operatorname{cont}(g)$
- 2. $\operatorname{pp}(fg) \sim \operatorname{pp}(f) \cdot \operatorname{pp}(g)$

Exercise 32. Let a(x) be a primitive polynomial with integer coefficients, and assume that a(x) is squarefree. Prove that there are only finitely many primes p such that a(x) is not squarefree modulo p.

Exercise 33. Try to derive an algorithm for producing the squarefree decomposition in the field $\mathbb{Z}_p[x]$, p a prime.

Exercise 34. After producing squarefree factors apply Berlekamp's algorithm for computing the complete factorization in \mathbb{Z}_5 of

$$x^7 + 4x^6 + 2x^5 + 4x^3 + 3x^2 + 4x + 2.$$

Exercise 35. Give an example of a polynomial $f \in k[x]$ that is irreducible with multiple roots.