to be prepared for December 5

Exercise 36. Given the polynomials

$$
\begin{aligned}
& f(x)=x^{7}-3 x^{5}-2 x^{4}+13 x^{3}-15 x^{2}+7 x-1, \\
& g(x)=x^{6}-9 x^{5}+18 x^{4}-13 x^{3}+2 x^{2}+2 x-1
\end{aligned}
$$

compute their gcd $h \in \mathbb{Z}[x]$. Check whether the integer factors of the resultant of f / h and g / h are unlucky primes in the modular approach to gcd computation.

Exercise 37. How many factors does $u(x)=x^{4}+1$ have in $\mathbb{Z}_{p}[x], p$ a prime? (Hint: Consider the cases $p=2,8 k+1,8 k+3,8 k+5,8 k+7$ separately).

Exercise 38. Compute the factorization of

$$
p(x)=112 x^{4}+58 x^{3}-31 x^{2}+107 x-66
$$

modulo 3 and modulo 11.
Exercise 39. Let $a(x)=5 x^{3}+9 x^{2}-146 x-120 \in \mathbb{Z}[x]$. Lift the factorization of $a(x) \bmod 3$ to a factorization $\bmod 27$. Check whether the result gives a factorization of $a(x)$ in $\mathbb{Z}[x]$.

Exercise 40. Apply the algorithm FACTOR_BH for factoring the integral polynomial

$$
a(x)=2 x^{6}-6 x^{5}-101 x^{4}+302 x^{3}+148 x^{2}-392 x-49 .
$$

As the prime use 5 . All the coefficients of factors of a are bounded in absolute value by 12 .

