to be prepared for December 12

Exercise 41. Compute the factorization in $\operatorname{GF}(8)[x]$ into irreducible factors of the polynomial
$f=\alpha x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+(1+\alpha) x^{2}$ where α is a root of the polynomial $1+x+x^{3} \in \mathbb{Z}_{2}[x]$.

Exercise 42. Compute the factorization in $\operatorname{GF}(27)[x]$ of the squarefree polynomial
$x^{10}+\left(1+\alpha^{2}+\alpha\right) x^{9}+\left(2 \alpha+\alpha^{2}+1\right) x^{7}+\left(2 \alpha^{2}+2\right) x^{6}+\left(\alpha+\alpha^{2}\right) x^{4}+\left(2+2 \alpha+\alpha^{2}\right) x^{3}+\left(1+\alpha^{2}+\alpha\right) x^{2}+(1+\alpha) x+1+\alpha$ into irreducible factors, where α is a root of the polynomial $1-x+x^{3} \in \mathbb{Z}_{3}[x]$.

Exercise 43. Compute the factorization of the polynomial

$$
\begin{aligned}
& x^{19}+14 x^{18}+23 x^{17}+3 x^{16}+22 x^{15}+25 x^{14}+27 x^{13}+22 x^{12}+58 x^{11}+38 x^{10}+ \\
& +42 x^{9}+74 x^{8}+55 x^{7}+68 x^{6}+62 x^{5}+38 x^{4}+39 x^{3}+18 x^{2}+7 x+4
\end{aligned}
$$

into irreducibles in $\mathbb{Z}[x]$ by the modular method.

