
1

Information Systems

WS 2005, JKU Linz

Course 12: XQuery

Gábor Bodnár

URL: http://www.risc.uni-linz.ac.at/education/courses/ws2005/is/

Overview

• Data models and Types

• Expressions

• Query prolog

2

Generalities on XQuery

The purpose of XQuery is to provide a language for extracting data

from XML documents.

Queries can operate on more than one documents at once. Subsets

of nodes can be selected using XPath expressions.

The query language is functional (but it also includes universal and

existential quantifiers), supports simple and complex data types

defined in XML Schema.

Just as in XSLT, the expressions play the central role in XQuery.

A The value of an expression is always a sequence, having some

sequence type.

3

Data Model

The data model of XQuery is an extended version of the data model

of XPath.

Roots of documents are called ’document nodes’ (cf. root node in

XPath).

The data describing each node can be retrieved by functions

implementing prescribed interfaces, called accessors. For instance

• dm:node-kind($n as node()) as xs:string prescribes an

interface to obtain the node type (e.g. ’element’, ’attribute’, etc).

• dm:string-value($n as node()) as xs:string prescribes an

interface to obtain the string value of the node.

4

Type Annotation

XQuery is a strongly typed language, using all types defined in

XSchema.

Type information can be assigned to element or attribute nodes by

• using the post schema validation infoset (PSVI),

• using the xdt:untypedAny type for element nodes and the

xdt:untypedAtomic type for attribute nodes

The typed value of a node can be extracted by applying the

fn:data function on the node, which corresponds to the

dm:typed-value accessor.

5

Typed Value Computation

There is a well-defined protocol that allows the XQuery processor to

determine the typed value of an object. Just an excerpt:

• The typed value of an attribute: If the type annotation

xdt:untypedAtomic, its string value as an instance of this type.

For other type annotation it is derived from the string value in a

way consistent with the schema validation.

• The typed value of a comment or processing instruction node is

the same as its string value, as an instance of the type xs:string.

• For text, document, and namespace nodes, the typed value of the

node is the same as its string value, as an instance of the type

xdt:untypedAtomic.

6

Typed Value Computation

• If the element has a type of xdt:untypedAtomic or a complex

type with mixed content, the typed value is the string value of the

node as an instance of xdt:untypedAtomic.

• For elements with simple type or a complex type with simple

content: the typed value is a sequence of zero or more atomic

values derived from the string value of the node and its type in a

way that is consistent with the schema validation.

• If the node has a complex type with empty content, the typed

value is the empty sequence: ().

• If the node has a complex type with element only complex content,

its typed value is undefined.

7

Expression Type Annotation

Expressions are evaluated in two phases, called static analysis and

dynamic evaluation.

Since expressions always have sequence values, we have to deal with

sequence types. A few examples are:

• xs:date refers to the built-in Schema type date,

• attribute()? refers to an optional attribute,

• element() refers to any element,

• node()* refers to a sequence of zero or more nodes of any type.

8

Basic Expressions

• Primary expressions include literals ("3.14"), variable references

($x), function calls (fn:count(book/author)) and constructors.

• Path expressions were discussed last time in context of XPath

(/faculty/*[@type="institute"]/head/email).

• Sequence expressions can be formed via the comma operator

((1,(2,3)) results (1,2,3)).

• Arithmetic expressions are built from numerical atomic values using

+, -, *, div, idiv, mod.

9

Basic Expressions

• Comparison expressions can be value comparisons (eq, ne, lt,
le, gt, ge), general comparisons (=, !=, <, <=, >, >=) and

node comparisons (is, <<, >>).

• Logical expressions are built from boolean atomic values using

and, or.

10

Constructors

Constructors are provided for every kind of node types to create

XML structures in a query.

Direct constructors resemble to generating literal elements in XSLT

with dynamic substitution using {}. For example, if $b is

<book isbn="0-812909191-5">
<title>Codenotes for XML</title>
<author>G. Brill</author>

</book>

<p id="{$b/@isbn}">Book:

{string($b/title)}, {string($b/author)} [{string($b/@isbn)}]</p>

<p id="0-812909191-5">Book:

Codenotes for XML, G. Brill [0-812909191-5]</p>

11

Constructors

Computed constructors allow to set the element names dynamically

via XQuery expressions. The computed version of the previous direct

constructor is

element p {
attribute id {$b/@isbn},
"Book:", element br {},
string($b/title), ",", string($b/author), ", [",
string($b/@isbn), "]"

}

12

Exercise

Let $s be bound to the msgs element in

<system>
<stamp>12-03-02 23:13</stamp>
<msgs>
<msg type="info">System started</msg>
<msg type="info">Logging in user ’maryk’</msg>
<msg type="warn">User ’bobm’ not found</msg>
</msgs>
</system>

What element does the following constructor create?

element {name($s/..)} {
attribute stamp { $s/../stamp },
<second>{string($s/msg[position()=2])}</second>

}

13

FLWOR Expressions

The acronym is an abbreviation of for, let, where, order by,
return.

The expression constructs a “tuple stream” (list of tuples of variable

bindings) filters it by the given condition and evaluates the returning

expression for each of them in the order requested.

The variables in the for clause will iterate on the values in the

sequences specified for them.

In usual imperative languages (C,Perl) an n-fold nested loop would

be analogous to n given variables in a FLWOR expression.

The variables in the let clause will be bound to the given sequences.

14

Example

for $d in fn:doc("depts.xml")//deptno
let $e := fn:doc("emps.xml")//emp[deptno = $d]
where fn:count($e) >= 10
order by fn:avg($e/salary) descending
return

<big-dept>
{$d,
<headcount>{fn:count($e)}</headcount>,
<avgsal>{fn:avg($e/salary)}</avgsal>}

</big-dept>

15

Conditional Expressions

<result>
{ for $u in doc("users.xml")//user_tuple

let $b := doc("bids.xml")//bid_tuple[userid =
$u/userid]

order by $u/userid
return <user>

{ $u/userid }
{ $u/name }
{ if (empty($b))

then <status>inactive</status>
else <status>active</status>}

</user>}
</result>

16

Quantified Expressions

General structure

every | some variable in expr

[, variable in expr]* satisfies expr

Example

<frequent_bidder>
{for $u in doc("users.xml")//user_tuple
where
every $item in doc("items.xml")//item_tuple satisfies
some $b in doc("bids.xml")//bid_tuple satisfies
($item/itemno = $b/itemno and $u/userid = $b/userid)

return $u/name}
</frequent_bidder>

17

Query Prolog

The prolog is a semicolon separated series of declarations (of

variables, namespaces, functions, etc.) and imports (of schemas,

modules) that create the environment for query processing.

A namespace declaration binds a namespace prefix to a namespace

URI:

declare namespace x = "http://www.my-company.com/";

A schema import adds a named schema to the in-scope schema

definitions:

import schema namespace
xhtml="http://www.w3.org/1999/xhtml"
at "http://example.org/xhtml/xhtml.xsd";

18

Query Prolog

A variable declaration adds a variable binding to the in-scope

variables:

declare variable $x as xs:integer {7};
declare variable $x as xs:integer external;

A function declaration adds a user defined or external function to

the available in-scope functions.

XQuery predefines the prefix local to the namespace

http://www.w3.org/2003/11/xquery-local-functions.

19

Example

declare function
local:summary($emps as element(employee)*)
as element(dept)*

{
for $d in fn:distinct-values($emps/deptno)
let $e := $emps[deptno = $d]
return

<dept>
<deptno>{$d}</deptno>
<headcount> {fn:count($e)} </headcount>
<payroll> {fn:sum($e/salary)} </payroll>

</dept>
};

20

Example

This application of the previous function computes a summary of

employees in Denver.

local:summary(fn:doc("acme_corp.xml")//employee[location
= "Denver"])

21

Summary

• Data model and Types

• Typed values and Expression type annotation

• Basic expressions

• Constructors and FLWOR expressions

• Conditional and Quantified expressions

• Query prolog

	Information Systems
	Generalities on XQuery
	Data Model
	Type Annotation
	Typed Value Computation
	Typed Value Computation
	Expression Type Annotation
	Basic Expressions
	Basic Expressions
	Constructors
	Constructors
	Exercise
	FLWOR Expressions
	Example
	Conditional Expressions
	Quantified Expressions
	Query Prolog
	Query Prolog
	Example
	Example
	Summary

