## Information Systems

WS 2005, JKU Linz<br>Course 3: The Relational Model

Gábor Bodnár
URL: http://www.risc.uni-linz.ac.at/education/courses/ws2005/is/

## Overview

- The relational structure.
- The relational algebra.


## The Relational Model

The relational model was formally introduced by E. F. Codd in 1970 and became the dominant modeling technique in the IT sector.

The relational model represents data in the form of two-dimensional tables.

A relational database is a collection of such tables each having a unique name.

| area-code | area-name |
| ---: | :--- |
| 0732 | Linz |
| 0662 | Salzburg |
| 0512 | Innsbruck |
| 05574 | Bregenz |
| 01 | Wien |
| $\vdots$ |  |


| phone-number | owner-first-name | owner-last-name | area-code |
| ---: | :--- | :--- | ---: |
| 243486 | Thomas | Muster | 0732 |
| 875678 | Hans | Schmidt | 0672 |
| 875678 | Hans | Schmidt | 0732 |
| 34452 | John | Example | 05574 |
| 4554323 | Monika | Beispiel | 01 |
| $\vdots$ |  |  |  |

ACodes
APhone

## Relational Structure

Let $D_{1}, \ldots, D_{n}$ be the domains for attributes $A_{1}, \ldots, A_{n}$ respectively. Then an $n$-ary relation over the given attributes with the given domains can be represented as

$$
R \subseteq D_{1} \times \cdots \times D_{n}
$$

In practice $R$ is a finite set, so it can be described as a table with $m=\# R$ rows and $n$ columns:

$$
\begin{array}{ccc}
d_{11} & \ldots & d_{1 n} \\
d_{21} & \ldots & d_{2 n} \\
\vdots & & \\
d_{m 1} & \ldots & d_{m n}
\end{array}
$$

## Relational Structure (continued)

Remark: In the literature the word "table" is used as a synonym for "relation" and "row" is used as a synonym for "tuple".

From the viewpoint of the modeling process, we consider the tables with atomic cells.

A table does not contain two identical rows.
The order of rows in a table is unspecified.
The order of columns can also be arbitrary, as long as the attribute values of each row go into the corresponding column.

## Remarks

We call a list of attributes with their corresponding domains a relation scheme.

In the relational model, a row corresponds to an entity and a table to an entity set.

The notion of superkey, candidate key and primary key applies to the relational model.

A nonempty set $K$ of attributes is a superkey for $R$ if for any $r, s \in R, r \neq s$ implies $\left.r\right|_{K} \neq\left. s\right|_{K}$ (where $\left.r\right|_{K}$ denotes the tuple of attribute values of $r$ belonging to attributes in $K$ ).

In certain cases it is unavoidable to use null values as some attribute values (usually denoted by NULL).

## Relational Algebra

The relational algebra is a query language to execute several kinds of operations on a relational database.

The fundamental operations are the following: select (unary), project (unary), rename (unary), Cartesian product (binary), set theoretic union (binary), set theoretic difference.

Additional operations are defined in terms of the fundamental ones are: set theoretic intersection (binary), natural join (binary), division (binary).

The operations may have additional parameters beside their input arguments; they are put in the subscript of the notation.

## Example Tables

We will use the following small database to illustrate the operations.

| Student |  |  | Attendance |  | Course |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sid | fname | Iname | sid | cid | cid | title |
| 0251563 | Werner | Schmidt | 0251563 | 327456 | 327456 | Analysis I |
| 0245654 | Andrea | Ritter | 0251563 | 327564 | 327564 | Algebra I |
| 0245675 | Daniela | Schmidt | 0245654 | 327456 |  |  |

Recall from the last lecture.
Takes

| Student |  |  |
| :--- | :--- | :--- | :--- |
| student-ID <br> first-name <br> last-name | $\longrightarrow$Attendance <br> $\frac{\text { student-ID }}{\text { course-ID }}$ | Course <br> course-it |

## Select

The operations selects tuples of the relation that satisfy the predicate which is an additional parameter to it. It is denoted by $\sigma$.

The atomic predicates allowed in the parameter of $\sigma$ are $=, \neq,<, \leq,<, \geq$, moreover with the logical connectives $\wedge, \vee$ compound formulas can be build.

## Example

The operation $\sigma_{\text {lname }}=" S c h m i d t " ~(S t u d e n t)$ results

| 0251563 | Werner | Schmidt |
| :--- | :--- | :--- |
| 0245675 | Daniela | Schmidt |

## Project

The operation projects the relation onto the set of specified attributes and additionally eliminates multiple rows. It is denoted by $\Pi$.

## Example

$\Pi_{\text {fname,lname }}($ Student $)$
Werner Schmidt
Andrea Ritter
Daniela Schmidt
$\Pi_{\text {lname }}($ Student $)$
Schmidt Ritter

## Cartesian Product

The operation combines each tuple from its first argument with each tuple from the second. The result is a relation whose attributes are the disjoint union of the attributes of the arguments.

The number of rows of the Cartesian product is the product of the numbers of rows of the arguments. It is denoted by $\times$.

Since the operation leads to exponential blowup of the number of rows, it is avoided in practice.

The operations which are formally defined via Cartesian products (e.g. joins) are implemented using more efficient algorithms that do not generate rows that would not satisfy the predicate of the operation anyway.

## Example

Student $\times$ Course

| 0251563 | Werner | Schmidt | 327456 | Analysis I |
| :--- | :--- | :--- | :--- | :--- |
| 0251563 | Werner | Schmidt | 327564 | Algebra I |
| 0245654 | Andrea | Ritter | 327456 | Analysis I |
| 0245654 | Andrea | Ritter | 327564 | Algebra I |
| 0245675 | Daniela | Schmidt | 327456 | Analysis I |
| 0245675 | Daniela | Schmidt | 327564 | Algebra I |

## Rename

The operation just changes the name of its argument to the one given to it in its parameter. It is denoted by $\rho$.

## Example

We want to select the students with identical last names

$$
\Pi_{\text {Student.fname,Student.lname }}\left(\sigma_{P}\left(\text { Student } \times \rho_{\text {Student2 }}(\text { Student })\right)\right)
$$

where $P$ is

Student.lname $=$ Student2.lname $\wedge$ Student.sid $\neq$ Student2.sid.

> | Werner | Schmidt |
| :--- | :--- |
| Daniela | Schmidt |

## Union

The operation takes the set theoretic union of two compatible relations, where compatible means that the sets of attributes and the corresponding domains are the same. It is denoted by $\cup$.
Teacher

| fname | lname |
| :--- | :--- |
| Wolfgang | Schiffer |
| Sabrina | Kaiser |

$$
\Pi_{\text {fname,lname }}(\text { Student }) \cup \text { Teacher }
$$

| Wolfgang | Schiffer |
| :--- | :--- |
| Werner | Schmidt |
| Sabrina | Kaiser |
| Daniela | Schmidt |
| Andrea | Ritter |

## Difference and Intersection

The difference operation takes the set theoretic difference of two compatible relations. It is denoted by - .

The intersection operation takes the set theoretic intersection of two compatible relations. It is denoted by $\cap$ and it can be defined as

$$
A \cap B=A-(A-B)
$$

## Natural Join

The operation combines a Cartesian product a selection and a projection operation into a single operation. It is denoted by $\bowtie$.

Let $A$ and $B$ be relations with attribute sets $R$ and $S$ respectively and let $\left\{A_{1}, \ldots, A_{n}\right\}=R \cap S$, then

$$
A \bowtie B=\Pi_{R \cup S}\left(\sigma_{A \cdot A_{1}=B . A_{1} \wedge \cdots \wedge A . A_{n}=B . A_{n}}(A \times B)\right) .
$$

If $R \cap S=\emptyset$ then $A \bowtie B=A \times B$; we also have $A \bowtie B=B \bowtie A$, and the operation binds from left to right.

## Example

Student $\bowtie$ Attendance

| sid | fname | lname | cid |
| ---: | :--- | :--- | ---: |
| 0251563 | Werner | Schmidt | 327456 |
| 0251563 | Werner | Schmidt | 327564 |
| 0245654 | Andrea | Ritter | 327456 |

Student $\bowtie$ Attendance $\bowtie$ Course

| sid | fname | lname | cid | title |
| ---: | :--- | :--- | ---: | :--- |
| 0251563 | Werner | Schmidt | 327456 | Analysis I |
| 0251563 | Werner | Schmidt | 327564 | Algebra I |
| 0245654 | Andrea | Ritter | 327456 | Analysis I |

## Division

The division operation requires that the set of attributes of the divisor is a subset of the set of attributes of the dividend.

It leaves those tuples of the dividend in the result (projected to the difference attribute set) which have an occurrence for each tuple in the divisor over the common attributes.

It is denoted by $\div$. Let $A$ and $B$ be relations with attribute sets $R$ and $S$ respectively and let $S \subseteq R$, then

$$
A \div B=\Pi_{R-S}(A)-\Pi_{R-S}\left(\left(\Pi_{R-S}(A) \times B\right)-A\right)
$$

## Example

$J=$ Student $\bowtie$ Attendance $\bowtie$ Course

| sid | fname | lname | cid | title |
| ---: | :--- | :--- | ---: | :--- |
| 0251563 | Werner | Schmidt | 327456 | Analysis I |
| 0251563 | Werner | Schmidt | 327564 | Algebra I |
| 0245654 | Andrea | Ritter | 327456 | Analysis I |

Course

| cid | title |
| ---: | :--- |
| 327456 | Analysis I |
| 327564 | Algebra I |

$\mathrm{J} \div$ Course
0251563 Werner Schmidt

## Assignment

It is denoted by $\leftarrow$, and works as the assignment operator in any imperative programming languages.

If a name of a relation of the database stands on the left hand side of the operator, the statement results the modification of the database.

If a new name gets assigned to a relation, it does not mean to introduce a new relation into the database.

## Example

Student $\leftarrow$ Student $-\sigma_{\text {sid }=\text { " } 0245675 " ~}($ Student $)$
This deletes the student with ID '0245675' from the Students table.

## Generalized Projection

This operation is analogous to projection with the additional feature that arithmetic expressions formed by the attributes and constants from the corresponding domains are allowed as parameters for the operation.

## Example

Let the Analysis-result table be described by the attributes sid, pts1, pts2, pts3, where the pts'es are the points the students reached on the first, second and third exam of a course. Then the generalized projection

$$
\Pi_{\mathrm{sid},(\mathrm{pts} 1+\mathrm{pts} 2+\mathrm{pts} 3) / 3}(\text { Analysis-result })
$$

will describe the average score of the students.

## Outer Join

It is an extension of Join to deal with missing information.

- left outer-join the result will contain also those tuples from the first (left) argument of the operation that did not match any tuple from the second (right) argument, and pads the missing attributes with null values.
- right outer-join analogously to the previous case, the tuples of the second (right) argument are carried over and padded with null values as necessary.
- full outer-join this operation, analogously to the previous cases, carries over every tuples from its arguments and pads them with null values ("on the left" or "on the right") as necessary.


## Example

A left outer-join Student $\bowtie$ Attendance $\bowtie$ Course results

| sid | fname | lname | cid | title |
| ---: | :--- | :--- | ---: | :--- |
| 0251563 | Werner | Schmidt | 327456 | Analysis I |
| 0251563 | Werner | Schmidt | 327564 | Algebra I |
| 0245654 | Andrea | Ritter | 327456 | Analysis I |
| 0245675 | Daniela | Schmidt | NULL | NULL |

## Aggregate operations

The general form is

$$
G_{1}, \ldots, G_{n} \mathcal{G}_{F_{1} A_{1}, \ldots, F_{m} A_{m}}(E),
$$

where $E$ is a relational algebra expression, the $G_{i}$ are attributes to group on, $F_{i}$ is an aggregate function to be applied on attribute $A_{i}$.

The semantic of the operation is the following:

- The tuples in $E$ are grouped by the $G_{i}$, such that in each group the tuples have the same $G_{i}$-value for each $i$ and tuples in different groups have at least one difference in the $G_{i}$-values.
- A tuple of the resulting relation is $\left(g_{1}, \ldots, g_{n}, a_{1}, \ldots, a_{m}\right)$, where the $g_{1}, \ldots, g_{n}$ identifies a group and $a_{1}, \ldots, a_{m}$ are the results of the corresponding aggregate functions on the attribute values of the tuples in the group.


## Example

Let us consider a relation Credits,
Credits

| sid | cid | credit |
| ---: | ---: | ---: |
| 0251563 | 327456 | 3 |
| 0251563 | 327564 | 2 |
| 0245654 | 327456 | 3 |

The aggregate operation

$$
\text { sid } \text { Creditsum }_{\text {sum credit }} \text { (Credits) }
$$

results

| 0251563 | 5 |
| :--- | :--- |
| 0245654 | 3 | .

## Database Modification

Let $E$ be a relational algebra expression resulting a relation compatible to a relation $R$.
delete $R \leftarrow R-E$.
insert $R \leftarrow R \cup E$.
update lt is denoted by $\delta$. General form: $\quad \delta_{A \leftarrow E}(R)$,
where $R$ is a relation, $A$ is an attribute and $E$ is an arithmetic expression with constants and attributes in $R$, resulting a value in the domain of $A$.

If one wants to apply the update only on a subset of tuples fulfilling the predicate $P$, one can use $\delta_{A \leftarrow E}\left(\sigma_{P}(R)\right)$.

## Views

With the view construction one can create virtual tables in a database which are not included in the logical scheme.

A view is defined via a new command

$$
\text { create view } V \text { as } Q
$$

where $V$ is a new name (identifier) for the relation to be created and $Q$ is a query of the relational algebra.

After the definition we allow $V$ to appear anywhere in a relational algebra statement where a relation of the database can appear.

## Views-Caveats

- Whenever a view is used to modify the database the resolution of the operation may require extensive usage of NULL values.
- As views only represent relations that are derived from the relations of the database via queries, they have to be recomputed after each modification of the database. The null values can be a real problem.
- From the definition it also follows that views can be used to define new views, hence resolution of views can require several steps.


## Summary

- Relational structure (columns, rows, tables)

Relational algebra:

- Select, Project, Cartesian product, Rename
- Union, Difference, Intersection
- Natural join, Division
- Assignment, Generalized Projection, Outer joins
- Aggregate operations

Database modification
Views

