
1

Information Systems

WS 2005, JKU Linz

Course 5: Indexing and Hashing

Gábor Bodnár

URL: http://www.risc.uni-linz.ac.at/education/courses/ws2005/is/

Overview

• Indices (dense and sparse).

• B-trees.

• Hashes (extendible).



2

What are they good for?

Indices and hashes are files with special structure, helping the DBMS

to navigate faster in the database.

Goals:

• To accelerate data retrieval from the database.

• To achieve as little administrative overhead as possible at database

modifications.

To emphasize that in this discussion we consider the database on the

physical level, we will talk about files and records instead of tables

and rows.



3

Generalities on Indices and Hashes

The set of attributes on which an index (or hash) file is created is

called the search key for the index (or hash).

Indices work like the catalog in the library, containing search key

values together with pointers to the corresponding records in the

indexed file.

Indices are useful to accelerate queries involving attributes with

ordered domains.

There are several aspects to evaluate indexing methods

(access/insert/delete times, space overhead) and there is not a

single best performer.

Relations of the database can have multiple indices and hashes

assigned to them.



4

Example



5

Primary and Secondary Indices

Given a file of the database whose records are ordered sequentially

according to a set of attributes.

An index whose search key is such a set of attributes is called a

primary index.

Such a search key is usually (but not necessarily) the primary key of

the relation stored in the file.

Indices that define not the sequential order of the file are called

secondary indices.



6

Dense and Sparse Indices

An index is called dense if an index record appears (in the index file)

for every search key value in the indexed file.

Dense indices allow fast data retrieval but they can require large

amount of disk space.

When only some of the search key values appear in the index file,

the index is called sparse.

Primary indices can be sparse.

In general it requires first searching the index file and then searching

the data file to locate the requested record.

Secondary indices have to be dense.



7

Example

Dense primary index
Search key: sid Pointer
0245654 1
0251563 2
0252375 4
0252483 5

Dense secondary index
Search key: {sid,cid} Pointer
0245654 327456 1
0251563 327456 3
0251563 327564 2
0252375 327456 4
0252483 327564 5

Indexed file (sorted by the attribute sid)
Address sid fname lname cid title

1 0245654 Andrea Ritter 327456 Analysis I
2 0251563 Werner Schmidt 327564 Algebra I
3 0251563 Werner Schmidt 327456 Analysis I
4 0252375 Stefan Braun 327456 Analysis I
5 0252483 Franz Lander 327564 Algebra I



8

Index Organization

For large indexed files one can apply multi-level indices.



9

Index Organization

If the search key is not a candidate key in the indexed file, pointer

buckets can also be realized by the inner level index of a two level

indexing scheme.

We search for the given value on the outer level, which points to the

appropriate part of the inner level that stores pointers to the records

of the data file with the given search key values.

It is also advantageous to fit indices with physical storage units, for

instance to organize the multi-level index by

disks → cylinders → blocks.



10

Indices and Database Modifications

If record is deleted from the indexed file, we have to check for each

index file (on this data file) whether the deleted record was the last

with the given search key value.

If yes the index record for that value has to be deleted from the

index file.

For sparse indices deleting a search key value can be substituted

with updating it to the next larger value in the data file, if it is not

already in the index file.

Insertion implies the opposite actions as deletion.



11

B-trees

The most popular data structures for indexing are B- and B+-trees.

The most important feature of B-trees is that they are always

balanced, hence the depth of the tree grows only logarithmically in

the growth of the indexed records.

B-trees contain two kinds of data: search key values (with pointer

buckets to the indexed file) and pointers to subtrees. One node

contains many key values and pointers.



12

Rules for B-trees

To construct a B-tree we fix an even integer n and require that

• the root stores minimum 1 and maximum n key values,

• each node of the tree, with the exception of the root, stores

minimum n/2 and maximum n key values,

• leaf nodes are on the same level.

The subtrees have the property that each value stored in them lie

between the two values neighboring the pointer that links the

subtree to the node.



13

Insertion into B-trees (Example)

We have chosen n = 4.



14

Deletion from B-trees (Example)



15

Hashes

In hashing we prescribe an address space to which search key values

have to be mapped.

A hash function h maps from the domain of search key values to the

address space we fixed.

A hash function is by no means injective; at each address we have to

provide storage for a list of pointers (identifying the records whose

search key values hash to this address).

Such a storage is called a bucket.

To search records with a given search key K, we look through the

records identified by the pointers in the bucket with address h(K).

Insertion and deletion is straightforward.



16

Good Hash Functions

A good hash function:

• should be rapidly computable,

• should distribute the search key values as uniformly as possible

between the addresses.

Problems:

• The search keys can come from various domains and can have

hidden patterns.

• Bucket overflows are unavoidable in practice.



17

Extendible Hashing

Dynamic hashing copes with the problems of bucket overflow by

allowing dynamic splitting and merging of the buckets.

Extendible hashing is a specific type of dynamic hashing which

results fairly low performance overhead.

The idea of extendible hashing is comparable to the one of B-trees.

The hash function h has to map search key values to b-bit unsigned

binary integers (e.g. b = 32).

However, we use only the i initial bits of the hash values to

determine the bucket address, where 1 ≤ i ≤ b initially can be set to

1.



18

Extendible Hashing (continued)

The bucket with index j is addressed by the first ij bits of the first i

bits of the hash values, where ij ≤ i.

This means that 2i−ij rows of the bucket address table points to the

jth bucket (the table has 2i rows altogether).

Whenever we insert a pointer to a record with a search key value K

into the hashing scheme, we compute h(K), take its first i bits and

try to add it to the bucket whose address we obtain.

In case of an overflow, the bucket is split and the corresponding ij
value is increased.

If we had ij = i, i also had to be increased.



19

Insertion in Extendible Hashing (Example)

We have chosen the bucket size to be 4.

Deletion implies the opposite actions (bucket merging and reducing

ijs and i).



20

Comparison of Indexing and Hashing

Indices are useful in queries for ranges of search key values

(after the start of the range is found the index can be traversed to

retrieve consecutive records).

Therefore indices provide better “worst case timing”.

Hashing, on the other hand, is more useful in accessing particular

(individual) records.

Therefore hashes provide better “average timing”.



21

Questions to be Regarded

• If the periodic re-organization of index and hash file structures pays

off.

• What is the relative frequency of insertion and deletion?

• Do we want better average access times or worst case access times?

• The type of queries we expect on the database.



22

Summary

• Purpose of indices and hashes

• Primary/secondary and dense/sparse indices

• Index organization

• B-trees, insertion/deletion

• Extendible hashes, insertion/deletion

• Comparison of indexing and hashing


	Information Systems
	What are they good for
	Indices and Hashes
	Example
	Primary and Secondary Indices
	Dense and Sparse Indices
	Example
	Index Organization
	Index Organization
	Indices and Database Modifications
	B-trees
	Rules for B-trees
	Insertion into B-trees
	Deletion from B-trees
	Hashes
	Good Hash Functions
	Extendible Hashing
	Extendible Hashing
	Insertion in Extendible Hashing
	Comparison of Indexing and Hashing
	Questions to be Regarded
	Summary

