
1

Information Systems

WS 2005, JKU Linz

Course 6: SQL

Gábor Bodnár

URL: http://www.risc.uni-linz.ac.at/education/courses/ws2005/is/

Overview

• Data definition.

• Simple Queries.

• Views and Joins.

2

About SQL

SQL stands for Structured Query Language.

It is a standard, which was originally developed by IBM Research.

The current version is SQL 2003.

SQL specifies:

• a data definition language (DDL),

• a data manipulation language (DML),

• embedded SQL (to make relational databases accessible in other

programming languages, like C, Pascal, PL/I).

3

About SQL (continued)

SQL also supports

• basic integrity enforcing,

• user authorization,

• transaction management.

In SQL terminology a relation is a table, and an attribute is a

column and a tuple is a row.

Keywords of the language are capitalized structure is marked by

EBNF notation.

4

Data Definition

A part of SQL is a data definition language (DDL), that allows us to

• define/modify/delete tables with prescribed domains for attributes,

• define or drop indices,

• specify integrity constraints,

• define authorization information.

5

Standard Types

Domain types for columns (i.e. attributes):

char(n) a character string of fixed length n,

int an integer (length can be implementation/hardware dependent),

numeric(i, d) a numerical value with i digits in the integer part (and

a sign) and d digits in the decimal part,

real a single precision floating point number,

date storing the years in four digits and the months and the days in

two,

time in hh:mm:ss format.

6

Standard Types (continued)

Coercion between compatible types, and the usual operations (e.g.

arithmetic for numerical types, or string concatenation) are

supported.

Many DBMSes also support the BLOB type (Binary Large OBject).

Simple domain definitions can be made, for example:

CREATE DOMAIN name type AS CHAR(20)

7

Creating Relation Schemes

Creating a table with a given relation schema:

CREATE TABLE table name (

col name col type [NOT NULL]

[, col name col type [NOT NULL]]*

[, integrity constraint])

Example

CREATE TABLE Student (

sid numeric(7,0) NOT NULL

, fname name type

, lname char(20) NOT NULL

, PRIMARY KEY (sid))

8

Example

Integrity constraints can be expressed with the CHECK clause.

CREATE TABLE Attendance (

sid numeric(7,0) NOT NULL

, cid numeric(6,0) NOT NULL

, PRIMARY KEY (sid,cid)

, CHECK (sid IN (SELECT Student.sid FROM Student)) AND

(cid IN (SELECT Course.cid FROM Course)))

Here we checked integrity constraints of foreign keys with a very

explicit construction.

9

Example (continued)

In PostgreSQL this frequent problem can be treated with a language

construction that specifies explicitly that something is a foreign key

for another table.

CREATE TABLE Attendance (

sid char(7) REFERENCES Student (sid)

, cid char(6) REFERENCES Course (cid)

, PRIMARY KEY (sid,cid)

The referenced columns must form a candidate key in the referenced

table, and if none is given, the primary key is assumed by default.

10

Modifying and Deleting Relation Schemes

A table (relation scheme) can be modified with the ALTER TABLE

clause.

ALTER TABLE table name [ADD col name col type] |
[DROP col name]

A table can be deleted with the DROP TABLE clause.

DROP TABLE table name

11

Creating and Dropping Indices

An index can be created with the CREATE INDEX statement.

CREATE INDEX index name ON table name (col name [,col name]*)

And it can be deleted by the DROP INDEX statement.

DROP INDEX index name

Example

This defines an index with name “stid” on the Student table by the

attribute sid.

CREATE INDEX stid ON Student (sid)

12

Simple Queries

In its simplest form the SELECT statement retrieves all the rows in

the projection of the Cartesian product of the named tables to the

specified columns.

SELECT [DISTINCT | ALL] [table.]column [, [table.]column]*

[INTO new table name]

FROM table [, table]*

The optional parameter DISTINCT results elimination of multiple

rows (getting 1NF), while ALL forces to leave all rows in the result.

All the columns of a table can be denoted by an asterisk.

The INTO clause can specify the target table in which the results

should be saved.

13

The WHERE clause

The WHERE clause can appear in context of a SELECT, DELETE,

UPDATE clause.

WHERE [NOT] [table.]column operator [value | [table.]column]

[AND | OR [NOT] [table.]column operator

[value | [table.]column]]*

The “operator” can be any operator of the language which is

applicable to the types of the columns appearing on its sides.

“Value” can be any literal value belonging to a type of the language

that makes sense in context of the “operator”.

14

The ORDER clause

The ORDER clause appears always in context of a SELECT clause.

ORDER BY [table.]column [ASC | DESC]

[, [table.]column [ASC | DESC]]*

Example

SELECT s.sid, s.fname, s.lname

FROM Student AS s, Attendance AS a

WHERE s.sid = a.sid AND a.cid = 327456

ORDER BY s.lname ASC, s.fname ASC

This gets the ID and names of students attending the course with ID

“327456” in a list ordered by last names and first names.

15

Set Theoretic Operations

• IN stands for set membership test.

• UNION and INTERSECT.

• EXCEPT stands for the set theoretic difference.

• EXISTS tests if the result of a query is nonempty.

The operators UNION, INTERSECT and EXCEPT eliminate

duplicate rows by default.

16

Nested Subqueries (Example)

Selecting names of students who attend at least one course.

SELECT fname, lname

FROM Student

WHERE sid IN (SELECT Student.sid

FROM Student, Attendance

WHERE Student.sid = Attendance.sid)

SELECT fname, lname

FROM Student

WHERE EXISTS (SELECT *

FROM Attendance

WHERE Student.sid = Attendance.sid)

17

Grouping and Aggregate Functions

Aggregate functions like MIN, MAX, AVG, SUM, COUNT are

supported by SQL.

Null values are eliminated from the columns before the function is

applied.

The GROUP BY clause defines the groups for the aggregate

functions and the HAVING clause eliminates aggregated values from

the result which do not fulfill its condition.

If a WHERE clause is also present, its conditions are applied before

the grouping is done.

18

Example

Selecting those students who have better averages than 2.

SELECT sid, AVG(grade)

FROM Result

GROUP BY sid

HAVING AVG(grade) <= 2

Counting for each course the number of people passed the exam.

SELECT cid, COUNT(DISTINCT sid)

FROM Result

WHERE grade < 5
GROUP BY cid

The DISTINCT keyword eliminates grade improvements (e.g. 4 → 2)

19

Database Modification

The structure of the statements are the same as for queries.

DELETE FROM table name

WHERE condition

INSERT INTO table name [(col name [, col name]*)]

[VALUES (value [,value]*) | select cause]

UPDATE table name

SET col name = expression [, col name = expression]*

WHERE condition

20

Example

INSERT INTO Student

VALUES (0245768, ’Alexander’, ’Wurz’)

After the table definition

CREATE TABLE Namelist (

fname char(20)

, lname char(20))

we can fill it with

INSERT INTO Namelist

SELECT fname, lname FROM Student

21

Example

Adding a student whose first name is not yet known.

INSERT INTO Namelist (lname)

VALUES (’Hackl’)

Then later . . .

UPDATE Namelist

SET fname = ’Hans’

WHERE fname IS NULL AND lname = ’Hackl’

Deleting all students whose last names do not start with R or S.

DELETE FROM Namelist

WHERE NOT (lname LIKE ’R%’ OR lname LIKE ’S%’)

22

Views

Views can be created with

CREATE VIEW view name AS query

As discussed before updating the database via views can lead to

problems, thus most DBMSes allow such actions only if the view was

created using a single table.

A view can be canceled by

DROP VIEW view name

23

Joins

One can construct joins in several ways in SQL. The general syntax

of the join clause is

table name {{ LEFT | RIGHT } [OUTER] | NATURAL |
[FULL] OUTER | [INNER] } JOIN table name

{ ON condition | USING(col [,col]*) }

The condition of the ON subclause can specify the columns on which

the join is to be taken (e.g. when the column names are different).

With the USING subclause one can specify the columns on which

the join is to be taken.

24

Example

Let us create the table (Student 1 Attendance) 1 Course.

CREATE TABLE StudentCourse (

sid numeric(7,0)

, fname char(20)

, lname char(20)

, cid numeric(6,0)

, title char(30))

25

Example

And fill it up with the data

INSERT INTO StudentCourse

SELECT *

FROM (Student INNER JOIN Attendance ON

Student.sid = Attendance.sid)

INNER JOIN Course USING(cid)

This view on the StudentCourse table eliminates IDs.

CREATE VIEW StCr AS

SELECT fname, lname, title

FROM StudentCourse

26

Embedded SQL

Embedded SQL is defined to allow access to databases from general

purpose programming languages (Perl, C, Ada, etc.) which are

called host languages.

The SQL statements in the host language are enclosed in an EXEC

SQL, END-EXEC (or simply semicolon) pair.

Inside an SQL statement variable names of the host language can be

referred by attaching a colon as a prefix.

The program in the host language that uses embedded SQL must

also contain an SQLSTATE variable, in which the status code is

returned after every SQL statement.

27

Example

Assume the “id” host variable contains a student ID whose name we

want to fetch into “fn” and “ln”.

EXEC SQL

SELECT fname, lname

INTO :fn, :ln

FROM Student

WHERE sid = :id ;

28

Cursors

In embedded SQL the program in the host language can access the

rows of the result one-by-one, and the mechanism to support this is

called cursor. For each query one should define a cursor as

EXEC SQL DECLARE cursor name CURSOR FOR query ;

and then retrieve the rows of the result in some kind of loop until

SQLSTATE reports the end of data event and then close the cursor.

EXEC SQL OPEN cursor name ;

do {
EXEC SQL FETCH cursor name INTO host var [, host var]* ;

}while(SQLSTATE != EndOfDataCode);

EXEC SQL CLOSE cursor name ;

29

Summary

• Data definition sublanguage: CREATE, ALTER, DROP

• Simple queries: SELECT, FROM, WHERE, ORDER BY

• Set theoretic operations: IN, UNION, INTERSECT, EXCEPT,

EXISTS

• Aggregate functions: AVG, MIN, MAX, COUNT; GROUP BY,

HAVING

• Database monification: INSERT INTO, UPDATE, DELETE FROM

• Views and joints

• Embedded SQL, cursors

	Information Systems
	About SQL
	About SQL
	Data Definition
	Standard Types
	Standard Types
	Creating Relation Schemes
	Example
	Example (continued)
	Modifying and Deleting Relation Schemes
	Creating and Dropping Indices
	Simple Queries
	The WHERE clause
	The ORDER clause
	Set Theoretic Operations
	Nested Subqueries
	Grouping and Aggregate Functions
	Example
	Database Modification
	Example
	Example
	Views
	Joins
	Example
	Example
	Embedded SQL
	Example
	Cursors
	Summary

