
1

Information Systems

WS 2005, JKU Linz

Course 7: On-Line Transaction Processing

Gábor Bodnár

URL: http://www.risc.uni-linz.ac.at/education/courses/ws2005/is/

Overview

• Security issues

• Transactions

• Locking

• ACID requirements.

2

Discretionary Security Control

A discretionary control scheme consists of authorities: named

security clauses that grant certain privileges to certain users on

certain tables (or views).

GRANT { privilege [, privilege]* | ALL [PRIVILEGES] }
ON [TABLE] tablename [, tablename]*

TO user [, user]* [WITH GRANT OPTION]

where

privilege = { SELECT | INSERT | UPDATE | DELETE |
REFERENCES | TRIGGER }

user = { username | GROUP groupname | PUBLIC }

3

Discretionary Security Control

REVOKE [GRANT OPTION FOR]

{ privilege [, privilege]* | ALL [PRIVILEGES] }
ON [TABLE] tablename [, tablename]*

FROM user [, user]* [CASCADE | RESTRICT]

Warning: A user has the “sum” of privileges granted to him directly

or via groups.

Privileges of users on view depend on the privileges on the

underlying tables.

If the creator of a view loses the SELECT privilege on any of the

underlying tables, the view is dropped.

4

Mandatory Security Control

Data objects have classification levels, users have clearance levels

(both coming from the same ordered set).

User at clearance level i can retrieve data at classification levels

j ≤ i.

User at clearance level i can modify data only at classification level

i. (A user can change to smaller clearance levels).

Statistical Security

Databases created for statistical purposes should allow

agglomerative queries to be performed, but they should forbid to

obtain (or even to deduce) information about individual rows.

5

Cryptography: the RSA Algorithm

Key generation:

• Generate two random primes p, q of approximately the same bit-

length such that n = pq is of the required length (e.g. 1024

bits).

• Set h = (p − 1)(q − 1), choose an integer 0 < e < h such that

gcd(e, h) = 1

• Compute 0 < d < h such that ed ≡ 1 mod h.

The public key is the pair (n, e) and the private key is (n, d); the

values p, q, h must also be kept secret.

6

Cryptography: the RSA Algorithm

Encryption:

• Get the public key (n, e) of the recipient.

• Let the message be m.

• The encrypted message corresponding to m is: c = me mod n.

Decryption:

• Let the encrypted message be c.

• Get the secret key (n, d).

• The corresponding decrypted message is: m = cd mod n

7

Recovery and Concurrency

Goals:

• To be able to recover from system crashes and faulty database

modifications without data and consistency loss.

(Power failure, disk fill-ups, network connection problems, etc.)

• To maintain the consistency of the database in concurrent use.

(Schedule database modification requests and avoid deadlocks.)

From the conceptual level we only see a mechanism (of the DML)

that allows user defined sequences of DB modifications, called

transactions, to transfer the database from one consistent state to

another in one logical step.

8

Atomicity

The recovery is solved by using log (or journal) files, into which the

DBMS archives states of the database for each transaction.

The actual implementations can be highly complex, especially when

concurrency is supported.

The “all or nothing” property of the transactions, or in other terms

the fact that either the whole transaction commits or everything is

rolled back to the initial state, is also called the atomicity property.

A typical application program is then consists of a sequence of

transactions.

9

Transactions

The logical step (or unit) of modifications is called a transaction.

In DBMSes it is usually start with the keyword

BEGIN TRANSACTION

and ends with one of the keywords

COMMIT

ROLLBACK.

Inside the transaction unit a sequence of DDL and/or DML

statements can be placed.

Transactions cannot be nested.

10

Transaction Management

At transaction start:

• The transaction manager of the DBMS “saves” the current state

of the database.

In the transaction block:

• If an error occurs, a ROLLBACK is requested (unsuccessful

termination). (Implicit ROLLBACK)

• If the block terminates successfully a COMMIT is requested (if

the COMMIT is executed with no error, the modifications are

permanently recorded in the database).

11

Example

/* cid has to be the pointer to the course ID converted to string,
returns 0 on success 1 on error, SQL OK Code is expected to be defined. */

int cancelCourse(char *cid){
char query1[50]; char query2[50];
strcpy(query1, ”DELETE FROM Attendance WHERE cid = ”);
strcpy(query2, ”DELETE FROM Course WHERE cid = ”);
strcat(query1, cid); strcat(query2, cid);
EXEC SQL BEGIN TRANSACTION;
EXEC SQL PREPARE q1 FROM :query1;
EXEC SQL EXECUTE q1;
if(SQLSTATE != SQL OK Code){ EXEC SQL ROLLBACK; return 1; }
EXEC SQL PREPARE q2 FROM :query2;
EXEC SQL EXECUTE q2;
if(SQLSTATE != SQL OK Code){ EXEC SQL ROLLBACK; return 1; }
EXEC SQL COMMIT;
if(SQLSTATE != SQL OK Code){ return 1; }else{ return 0; }}

12

On-Line Transaction Processing (OLTP)

Properties:

• It is mostly concerned with processing small amount of data per

transaction.

• It is often used in time-constrained environment (e.g. real time

systems).

The goal is to resolve any interference between concurrent

transactions.

In other words: To guarantee that a correct database gets

transferred into a correct one by an execution of individually correct

transactions concurrently.

13

Interference: Lost Update

The transactions read and update the same row of a table

concurrently.

Time Transaction 1 Transaction 2

t1 retrieve r

t2 retrieve r

t3 update r

t4 update r

At time t4 the update made by Transaction 1 is lost.

14

Interference: Uncommitted Dependency

Left: TA1 works on false assumptions.

Time TA 1 TA 2

t1 update r

t2 retrieve r

t3 rollback

Time TA 1 TA 2

t1 update r

t2 update r

t3 rollback

Right: After the rollback the update of TA1 is lost.

15

Interference: Inconsistent Analysis

The result computed in Transaction 1 is wrong because it retrieved

the old value of r1 and the new value of r3.

Time Transaction 1 Transaction 2

t1 retrieve r1

t2 aggregate r1

t3 update r3

t4 retrieve r2

t5 aggregate r2

t6 update r1

t7 retrieve r3

t8 aggregate r3

16

Locking

The interference problems can be handled by locking, which denies

access to a row/set of rows/table for other transactions until the

transaction which holds the lock finishes its modifications.

Types of locks:

Exclusive lock (write lock, X-lock) Requests for any other lock on

the object must wait till the active exclusive lock is released.

Shared lock (read lock, S-lock) Requests for other shared locks on

the objects are immediately granted, exclusive locks must wait until

the object is released.

17

Locking Protocol

For a transaction

• to retrieve a row in a table of the database first requires to get an

S-lock on it.

• to modify a row (alter a table) in the database first requires to get

an X-lock on it (if it already has an S-lock it must “upgrade” it to

an X-lock).

Locking requests that cannot be immediately granted get into a

waiting queue.

“Overlapping” S-locks can make X-lock requests wait for too long:

this phenomenon is called starvation.

18

Deadlocks

This is the situation when two or more transactions wait on each

other to release a lock.

Time Transaction 1 Transaction 2

t1 acquire S-lock on r

t2 retrieve r

t3 acquire S-lock on r

t4 retrieve r

t5 X-lock request on r

t6 wait X-lock request on r

t7 wait ... wait ...

19

Deadlock Resolution

To predict and avoid deadlocks can be difficult and time consuming

(finding circles in graphs).

In practice if a transaction does not make any progress within a

given time limit it is assumed to be deadlocked.

If there are presumably deadlocked transaction, the transaction

manager chooses a “victim” and requests an implicit rollback on it.

When this happens all the locks the “victim” held get released.

20

Serializability

A (possibly interleaved) execution of a set of transactions is called as

a schedule.

A schedule of a set of transactions, which are individually correct by

assumption, is called serializable if and only if it produces the same

result as some serial execution of the same set of transactions; and

this does not depend on the (a priori correct) initial state we start

from.

Serializable schedules transfer the database from a correct state into

a correct state.

Serializability can be difficult to test for an arbitrary schedule.

21

Two-Phase Locking Protocol

The two-phase locking protocol requires that

• a transaction must acquire a lock (of the appropriate kind) on a

tuple before it operates with it

• after releasing a lock, the transaction must never acquire a lock

again.

In other terms, the transaction must acquire locks and it is expected

to separate the lock acquisition and the lock release phases.

Theorem. If all transactions obey the two-phase locking protocol,

then all possible schedules are serializable.

22

Uncommitted Dependency and Locking

Time Transaction 1 Transaction 2

t1 acquire X-lock on r

t2 update r

t3 release X-lock on r

t4 acquire S-lock on r

t5 retrieve r

t6 release S-lock on r

t7 commit

t8 rollback

To achieve recoverability, we require that a transaction which uses

data modified by another transaction must not commit before the

other terminates (and if that rolls back, the first must be rolled back

too). Such a schedule is called cascade-free.

23

The ACID Requirements

Atomicity Results of transactions are either all committed or rolled

back (“all or nothing” principle).

Consistency (or Correctness in the more rigorous sense) The

database is transformed by a transaction from a valid state into

another valid state. (Consistency, however need not be preserved

at intermediate points of the transactions.)

Isolation (or serializable and non-cascaded in the more rigorous

sense) The result of a transaction is invisible for other transactions

until the transaction commits.

Durability Once a transaction has committed, its results are perma-

nently recorded in the database.

24

Summary

• Discretionary and mandatory security control

• RSA algorithm

• Recovering consistency using transactions

• Interferences in OLTP: lost update, uncommitted dependency, in-

consistent analysis

• Locking protocol, deadlock

• Serializability, two phase locking

• ACID requirements

	Information Systems
	Discretionary Security Control
	Discretionary Security Control
	Mandatory Security Control
	Cryptography: the RSA Algorithm
	Cryptography: the RSA Algorithm
	Recovery and Concurrency
	Atomicity
	Transactions
	Transaction Management
	Example
	On-Line Transaction Processing
	Interference: Lost Update
	Interference: Uncommitted Dependency
	Interference: Inconsistent Analysis
	Locking
	Locking Protocol
	Deadlocks
	Deadlock Resolution
	Serializability
	Two-Phase Locking Protocol
	Uncommitted Dependency and Locking
	The ACID Requirements
	Summary

