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Chapter 1

First Lecture on 13.10.2005

1.1 What is logic?

Note: Logic is “Reasoning about reasoning”

Figure 1.1: Problem: Person wants to get the apple

Problem:

e Person wants to cross the gap to an apple
e He could try to jump, but would fall down
e He could try it with the tree, but it would break

e So he tries to make experiments, just to explore/study the problem in his head, f.ex. with the second
tree
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Apply solution Abstract world ¢ Apply

(interpret solution) with solutlon

with solution 0
1
Engineering :
1
|
[

1 1

I U e —— L
A ' ' B |
0 0 1 0
i \OX : ! !
i Real world ! Abstractworld i Observe |
| with problem Observe reality ! with problem | !
! (construct model) 0 | !
[ (abstract) 0 | !
i Physics, Chemistry, ... Y |
i ! Think Fe i
0 ! (Reason) ! !
i ! (solve problems ! Reason |
! 1 in abstract models) ! . !
i Computer Science | L ! Logic !
0 . | Mathematics ! !
! Computers ® ] '
0 : 1 0
i N | i i
1 1 1
: <@ : | :
0 ” : v | 1
| Real world ! ! !
i i
1 1
1 1
1 1
1 1
1 1
: 1
1

@ Computer enables us to directly apply
an abstract world problem to a real world solution “"reasoning about reasoning"

Figure 1.2: Essential steps in human problem solving (A)

Note: “programs are essentially logical formulae”

1.2 Why Logic ?

1.2.1 Russel Paradoxon

Sets:a€ A

Consider things like

e set of all students in this room
e set of all even numbers
e set of all numbers

e set of all sets
Problem:

AgA fex. {1} ¢ {1}

X={AlA¢A}

VgBeX < B¢ B

Obtain a contradiction: XeXeXe¢X
XeX=>X¢X /¢

X¢X=>XeX 4

not a contradiction A=>-A = -AV-A=-A
not a contradiction -A = A -(mA)VA=A

Only the conjunction —=A A A is wrong {
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Via the rule P = Q = (=P) v Q. Corresponding truth table is:| T T|F

So X = {A|A ¢ A} has the implicit axiom 3y, VgB € M & B ¢ B. This is in this case wrong, we do simply
not make such assumptions.

X = {Alem ZIA]
——
"p]‘operty"

Note: ‘“‘there is no truth in logic”

Note: “there is no sets of all sets”

1.2.2 Termination Problem

p 1l x
N——— —

Does the program p terminate with input x ?

One can think of a(n encoded) program as a long number, and of an input as also a long number.

T if
(Program &) T[p] = {F ifﬁ/i/ﬁ

T ifplx

Xlp, Al = {]F ifp/L/x

T  if =T[p]

(Program) S[p] = {S[p] if T[p]

read like: calls T'[p],

e if it returns false, then returns true

e if it returns true, then it returns S [p]

V,Slp o pip
so this would meanthat: § | § & § /L/ S

So this shows that such a program like & - which decides if another program terminates - cannot exist.
The termination problem is undecidable.

But this doesn’t mean that a special program can’t be verified, but only means that a most general verifica-
tion is not possible.
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1.2.3 Sorting
{4,3,1,2} — {1,2,3,4}

Intuitive Def.: ...,a,b,... a<b

Logical Def.:

¥, ( isSorted[S] & (YxyVar(( S = X — (aby—Y)=(a<h)))

Note: The symbol — is used here to express concatenation.

Sort[S]
isSorted[S] = Sort[S]=S
—isSorted[S] = AxyJup (S =X — (a,b) — Y) A (a > b))

(a>b) = (Sort[X —{a,by—=Y]=Sort[X — (b,a) —Y)])

Implementation in Mathematica:

In: S[{X___,a_,b_,Y___3}1/; (a>b):=S[{X,b,a,Y}];
In: S[L_]:=L;

In: S[{3,4,2,1}]

Out: {1,2,3,4}

1) Logic Syntax (formulae)
vs( isSorted[S] = (Sort[S]=S5) )/\
V(= isSorted[S] = (SortlS]=SortlModified|S])) )

2) Different Syntax: Functional programming style

Sort[S]

S if isSorted[S]
Sort[Modified[S]] otherwise

3) Different Syntax: Imperative programming style
while (—isSorted[S]) {

S«Modified[S]
}

If the program terminates, then S is sorted.

e The non-termination of 3) corresponds to the non-existance of the function 2).
e So one needs to prove that it terminates.

o Check partial correctness (if certain problem properties are not given).

Motivation: Bugs in programs and their consequences, for example:
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e Div-Error in Intel processors (Programming errors)
o AT&T breakdown
e rocket got lost

- ...
Idea: Solve this problems by analysing them mathematically

o all our models are approximative in the real world

e but in the world of the program, everything is concrete, but nevertheless so much is buggy (para-

doxon)
1.3 How?
" it rains and itis sunny "
— ——— —
A B
or f.ex.
" it rains and it is not sunny "
—— —_———
A -B
1.3.1 Propositional Logic
Syntax Semantics

OC

Figure 1.3: Syntax and Semantics - Now Syntax

1.3.1.1 Syntax

Let’s formalize the language of propositional logic expressions:

AAB

£ ...Language AA-B

with "words" like | (=AAB) < (A= B)
AN-A

Set of "symbols"

"alphabet" = {(OU{AV, =, UT,Flue
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Note: O is the set of propositional variables. F.ex. this could be {A, B,C, P, Q,...,A,A>,...}. This set ®
should be at least conepumerable” -

All our formulae are words over this alphabet Z.

’7A /\ B ba i bad /\ A B’?
For example, the word AAB has three symbols. The sequence is important,so T T T

0o 1 2

"AANB:{0,1,2) —
”A A B”[O]
in general, (w[e X"]): {0,...,n} — X

Il
> M

> o= U " (Set of all words [over the alphabet X])
n=0
0 = (1)
1
"empty word"

A word (—A V B) can be coded as ((,—, A, V, B, ...). This notation is inconvient, but to be mathematically
precise, one would have to write it this way.

Generalized Inductive Definitions

e (0) T,F € £ or one can also write {T,F} c .

o (I)if ©¥e® ,then e (a propositional variable 9 "is" also a logical formula)
——— ~——
"variable" "word", logical formula

b (Z)ifga’!r//eg’then - ,(QD/\!,[/),((,DV(J/),((,O@!,[/),((F@lﬁ)eg
—_—— ——— ——— ——— ——

"are also words in the language"
— Note: The binary operators can also be formulated this way: () € .Z, for a € {A,V, =, &}
e (3) These are all the formulae

X* obeys / has also these properties (0), (1) and (2)

Way to reduce it to the little as possible set

. if a subset .Z” of X* satifies (0),(1) and (2),
English { then .Z is a subset of .Z’.
Formula ¢:

VY orcs:if ((T,F} € %" and ¥ € ¥’ and -.¥’" C ¥’ and
and Yoe(pvm.0) L'l € L") then £ C 2
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Note:

(we speak in) meta-language (f.ex. symbol ¢)

3
(about) object-language (f.ex. symbol "A A B”)

Note: Preferred notations of Prof. Jebelean:

ax(b+c) (arith. term)

f) is ambiguous: { f(b+c) Function-call

1) 3

flx] 1isin this context unambiguous: {

{ Vo)x=21=x>0)

ax(b+c) (arith. term)
fIlb+c] Function-call

VMxeR)(x>21=x>0) “better syntax Y Xy
x,yeR

2)

L...“Length”

e (0)L[T] = L[F] =1
e (DLW =1,if3e®
*(2)
= Ll~¢] =1+ L[¢]
- Ll(pay)] = Llp]l + 3 + Liyl,ifa e {A,V,=, &} and g,y € £

Reformulation of formula ¢ with property &:

Vo if Yyeouirr <[v] and
v¢,w62*if (g[‘%’] and c@[lﬁ]) then Vae{/\,\/,:,alg[‘#’alﬁ]

then (Vyex-if ¢ € £ then Z[y])

wed ~ Pw]

Another way

% ={T,FlU®© S = =S U LJ (FLas)

a€{AV,=, 0}

Voot = L, U=240 | ] (Zaed)

a€{AV,>,o}

$=Uﬁ

n>0
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If T know, that a set of strings is increasing, then

LHAHhC---C L, <.

Or one can simply write V,,50-%, € L1

=% = [¢l. Fuope %)

n=0
1.3.1.2 Semantics

Syntax Semantics

ZCyr

ANB

Figure 1.4: Syntax and Semantics - Now Semantics

AAB says us / means "this is only true if both are true"
to describe this mathematically, f.ex. use truth tables :

| =3
1| =3

g
>

£
SEE

Table 1.1: Truth table for conjunction connective

Can also be described with fynp : .# — {T,F}, with & : {1 : {A, B} — {T,F}}

Note: 7 is called an “interpretation”, whereas & is the “set of interpretations” for all propositional
variables, in this case this is only {A, B}.

So to become more general, one can replace {A, B} with the whole set of all propositional variables ®,
resulting in

& I : 0 — {T,F}}
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(@) ... "Truth evaluation of a formula ¢ under the interpretation .#"

Fr = F
<T>I = T
My = I[V]
(—e)r = OppositeOf [{¢)7]

man schreibt Z-, [{¢)/]

(pVir By (o). W1l

- is given by the truth table for the - Operator.

f.ex. Application: Theorem Proving For example A A —A is "al se™: The correct term for this is
“unsatisfiable”: V1 fap-alZ] = F.

When (¢); = T for a special 7, this is called “7 satisfies ¢” or “I is a model for ¢”.
(A = (A = B)) > Bis "always-true™: The correct term for this is “valid”: V7 (...); = T.

A example where a formula is “invalid”, but “satisfiable” is: A A B (depends on T).



Chapter 2

Second Lecture on 20.10.2005

Propositional Logic

o Syntax, Semantics
o Simplification

e Proof Systems

2.1 Syntax

T,F, ¥:A,B,...,P,Q
"these are all the formulae" { —¢
(@A), (eV ), (g =) (¢ & ¥)

Note: from time to time, we might omit the parentheses

2.2 Semantics

2.2.1 Semantics of logical connectives

f.ex. the semantics for A A Bis given by faap : -# — {T, F} with & = {I : {A, B} — {T,F}}.

Note: (7 is an interpretation (and ¥ is the set of all interpretations)).

We introduce the notation (A A BY; = B, ((A);,{(B);) = B, (T,F)=F (for an interpretation 7 = {A — T, B — F})
Note: 2, is a function, given by the truth table of the logical AND-operator.

We transform the problem of evaluating ”A A B” to the AND of it’s components.

| [Z ) [Z[T][E) [2 |T][F] A [T][F] |[Z]T|F]
T| F T [T|F| [T |T|T] [T |T|F|][T]|T|F
F| T F |[F|F||F |T|F|[F |T|T|[F |F|T

Table 2.1: The semantics of logical connectives

15
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(~@dr=T  iff (p); #T
i.e.: not({p)y =T)

Ay =T iff (p)y=Tand (Y);=T

Chapter 1 in Script of Bruno Buchberger

(2 instances of the tool)

~
~

s N
Apply stone (tool)  onto stone (tool)

|

Obtain refined stone (tool)

Figure 2.1: “Little Movie” story

2.2.2 Definition of (O);
(M =T.<F)r=F

Note: in the case of (T)7, T is a symbol of the object level, whereas in the case of = T, T is a symbol of
the meta level.

Nr=10)
(=@} = B-((¥)1)

A r=Brle)rW)r)
The same thing can be done analogically to define (¢ V ¥);,{¢ = ¥); . (¢ © ¥);

. fo: I = {T, Fimit ¥ ={I : © - (T,F}}
T RO =
Note: O denotes the set of all propositional variables, whereas % denotes a single variable within this set.
F: -9
F(p) = f,

Based on these semantics we can see the possible transformations.
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2.2.3 Example for Simplification

ExampLE %:  For an interpretation 7 = {A — T, B — F} one can simplify the object level expression
”(A A (A = B)) = B” with transformations on the meta level:

(ANA=B)=B); = ZA(AANA=B));,(B)r1)
= B (Br(A)r.{(A= B));).(B)r)
= B (Br(A)r, B (A1, (B)1)),(B)r)

= gﬁ <@/\ T$ ﬂﬁ(TJF) ,]F
[ —
F

= T

Here a schema is given which makes it shorter to write, but in order to be mathematically precise, one
would have to use the above version:

(AA_A=>B) > B
T T F F

————
F

2.2.4 Properties ‘““valid”’ and “satisfiable”

(For any I € I : f,(I) = T) is also called “valid” (the opposite is “invalid”)

(For any I € I : f,(I) = F) is also called “unsatisfiable” (the opposite is “satisfiable”)

()7 = T is also called “T satisfies ¢ or also “7 is a model of ¢”

2.2.5 Definitionof ¢,...,¢0, F ¥

DlyeeesPpn '= lp iff for any I|e fvar(w)uuil Var(e;)
—,————
The index: "Union of all variables
occurring in ¢y, . .., ¢, and "
(If 1)y = ... ={pu)r =T, then Y); = T)

Note: = is equivalent to implication, helps us to make a distinction between object level and meta level

Note: We will not explicitly write the expression in brackets in the future, because it’s too complex.
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2.2.6 Definition of ¢ = ¢
We want to define ¢ = .
Naive try:
p=yiffforany I € .9 : f,(I) = f,(T)

Problem: For the 7 it is not clear what is meant. 7,7 1,?

For example A = B:

BN {7 :{A} - (T, F}}
Sg = {I:{B} - {T,F}}
ingeneral: ! 7:0 — {T,F}

This general set .#of all the interpretations (Z : ® — {T,F}) can become a very large set, so we only take
the subset of relevant interpretations, therefore we use: #4 p) : {7 : {A, B} — {T,F}}

Ergo: Solution is then

Y= lﬁ IH fOI‘ any I € LﬁVar(t,a)UVar(lﬁ) : f«p(I) = flﬁ(].)

But as mentioned above, this is inconvenient to write, so this is often omitted.

2.2.7 Simplification rules

PAY =Y Ag

e Commutativity: { (same with V)

@1 A (@2 A@3) = (o1 Ap2) A3

e Associativity: { (same with V)

pPAp=EQ

e Idempotence: { (same with V)

This can be extended for more complex expressions, for example (A V (AV B) V(CV B)))vC=(AV BV C):

(M V)V VIV = Vi VI3 VIV s
this can also be notated : \/ {01,102, 93, 04, 05}

e Properties of negation

oNp = F
~leVvy) = () A(-Y)

~eAY) = (mo) V()
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e Distributivity

oAW1 V)
eV Y1 AY2)

(@AY V(e AYr)
@V AleViyn)

e Elimination of = and &

>y = (CQVy

vy = (e=>PAY=9
= (V) AEY Vo)
= (eAY)V (mp AY)

Example usage of rules:

AV BV -A
(AV-A)VB
TV B

I
=

e Properties of truth constants
Tve=sT Fve=gp

TAp=gp FAp=F
-T=F -F=T

T=¢p=9 F = ¢ = T (false implies anything)
(because T= o= (-T)Vo=FVep=y) (because F = o= (-F)Ve=TVe=T)

p=>T=T p=>F=-¢

Note: Homework 2.1 was to write the rules for the elimination of the truth constants for < (in analogy to
p=>T=Tandp = F = —p)

2.3 Proof

For example, prove TV ¢ =T

By definition:

For any 1 : (note that again, this only refers to
the relevant interpretations as explained above)
frve@ =" f(D)
(Tvey =" (Dr
BT .{p)r) =! (THr
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(BT F
T Either this case:T | or this case:T
F T F

Proof for =—¢ = ¢

(==p)r =" (o)1
<_|_|Q0>I = %—' (<_"10>I)
= B(B-(9))) = @)1

B (B (c) =" ¢ case { i ?Il; B (B~ (1)) =yeant T

%—v (%—' (F)) =Yeah! F

Another way to prove, is shown here with the example of proving @ A (1 V ¢2) = (@ A1) V (@ A Yr2)

(<o) [ Wiy [ W)y [va Vo [LHS [[ @Ay [ @ Ays [ RHS |
T T T T T
T T T F T

R TR R I R P
S I
| 3| | =] | S| | S

Note: Completing this table was the second part of Homework 2

Note: LHS means Left Hand Side, RHS means Right Hand Side

2.3.1 Strategies

Eliminate = =V =T
oANp=F
Push negation: (V) = (=) A(Y)
(Negation only directly before a literal) (e AY) = (=) V(=)

Distributivity
("ausmultiplizieren")

fovwinumseven v

Note: Every formula can be transformed to a conjunction of disjunctions of literals !

Conjunctive Normal Form (CNF): (... V... V..)A...A(..V...V..)

Note: Each of these underlined “disjunction of literals” is called “clause”, so a formula in CNF is a
conjunction of clauses.



CHAPTER 2. SECOND LECTURE ON 20.10.2005 21

(ANA=B)=1B (Replace implications...)
-(AAN(=AV B) VB (Push Negation/"De Morgan"...)
(mAV-=(-AVB))VB = (PushNegation ...)
(mAV (~—AA-B)VvB = (Distributivity — Second solution below)
((rAVA) A(FAV-B)VB =
T

(~AV (=BVB))
——
T

Il
=

Second solution:

(mAV (-—AA-B)vB = (Distributivity, other possiblity)
(mFAV(AVBYA (-BVB))) =
——
T
(FAVA) vB = T
[
T

—_

T

2.3.2 What is equivalence ?

Figure 2.2: Equivalence classes

"From every element in an equivalence class we obtain the same formula

. . . ~ "Normal form"
if we apply our transformations over and over again

Assume that ¢ =(AAAV BAEBY ONC) = Fholdsinsome 7 ={A - T,B—> T,C > T,D — T}

Note: This formula is in CNF and has 2 clauses with 2 literals and 2 clauses with 1 literal.

But: Even if this formula is in normal form, there is still an equivalent and more minimal expression which
is also in normal form !!!
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2.3.3 Proof Systems

Steps for example proof:

e Prove: AAN(A= B))=> B

e “deduction rule”

— Assume: AA (A= B)

+ this is decomposed into parts ...
- Assume: A
- Assume: A = B

* ... by “modus ponens”:

- Know: B

— Prove: B

the formal steps for this proof:

JFrAANA=>B)=B1HB ("Proof situation")

B

{(ANA= B)}+B
12

{A,A= B}+ B

13
{A,A= B,B}+ B

la

General: “rewriting rules”

Note: @ + V¥ is called a "sequent”

() F lﬁ1=>w2
Rl (rule 1) = l
OUfyYt * ¥
OU{p Apa} + ¥
R2 (rule 2) =
OU{p, b ¥

R3 (rule3) D Ufp1e1 = @2}
modus ponens

D U {p1,01 = @2, 02}

22
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(OJNE W
R4 (rule 4) = { | ifyed
T

Proofs are written like this (from below to above, but without the arrow):

T
A,A= B,B+B
A, A= B+B
ANA=B+B
("premises") +F(AA(A=B))=B

Inference rules are written like that:

D, -y R1)

D+yy =y

D, 01,00+ ¥
(RTINS 4 R2)
D,01,01 > 2,2 Y (R3)

Q01,01 =2+ ¥
... and read like that:

If we are able to prove this
then we can be sure that this holds

Keep in mind:

e We want to develop rules that help us to construct proofs

e To actually construct a proof one must combine these rules

o In this LVA, we don’t try to automate this (but there is research on that topic)

D, ¢ + ¢ "is axiom"

2.3.4 Informal Proof Tree

Prove: BVC,B=A,C=D + AVD
N——

Assume Prove

23
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"Prove by cases"

v N
Assume B Assume C
by B= A J l byC =D
(modus ponens) (modus ponens)
Know A Know D
Know A v D, Q.E.D. Know A v D, Q.E.D.

Figure 2.3: Informal Proof Tree

2.3.5 Sequent

Q.o + VY

considered as conjunction considered as disjunction
D0 + @, "Axiom"
Do + Y,0 "Axiom"

So we consider working with two sets:

"Sequent": [ F R4
conjunction disjunction

Definition: A “Sequent” is a pair of two formulae.
The set on the LHS is a conjunction
The set on the RHS is a disjunction

The sequent @ + ¥ holds iff A ® = /¥

Note: A (analogically \/) means the AND- (analogically OR-)Operation over all set elements

Oly s @n F W1, ..., U, holds
iff (o1 A Agy) = WY1 V- Vi) is valid

2.3.6 Proof Tree Notation

Now we reformulate the proof tree (given in 2.3) with a new notation:

B,A,B=A,C = D+ A,D ("axiom") C,D,B=A,C>=> D+ A,D ("axiom")
B,AALB=A,C=>D+AVD C,D,B=A,C=>D+AVD
BB=>AC=D+rAVD C,B=>AC=>Dv+rAVD
BVC,B=>A,C=>D+AVD
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O, Y O, Y
O,01 Vo bY

Figure 2.4: Rule for cases (“Fallunterscheidung”) (V +)

(ON VSN 1/%)
O+Y, ¢ Vi

Figure 2.5: R2 (+ V)

As already mentioned above (see 2.3.5 on the previous page), for a sequent @ + V:

Olyeees@n F WL, ..., U, holds
iff (1 A=+ Agy) = W1 V- Vi) is valid

so we can say by applying rule (A + B) = (-A V B)

Olyeees@n F WL, ..., U, holds
iff (=1 Voo Vo) V(1 V- Voy,) ds valid

So we see that
/\CD = \/‘P
o v v

This also enables us to move (negated) clauses from ® to ¥ (and vice versa) because:

(_'901 VeV Py \ ﬁlﬁl) 4 (WZ)
I (moving —y)
(@1 Vo Vag,) Vo (2 Vi)

2.3.7 Example proof
Prove (AVB)=C)=> (A=>C)A(B=0))

Assume (AV B) = C
Prove A= C)A(B= ()

v N
Prove A = C Prove B= C
P —— P ——
Assume A, Know: AV B by MP C Assume B, Know: Av B by MP C
Prove C Prove C

Note: MP means “modus ponens’ here

(ONS V8 DY,y
DY, Ay

Figure 2.6: Rule (- A)

25
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Proof tree with the new notation:

-B,A+ A, C (“axiom” -A,B+ B,C (“axiom”
-A,-B,A+C -A,-B,B+C
-AAN-B,A+C C,A + C (“axiom”) -AA-B,B+C C,B+ C (“axiom”)
-(AVB)VC,A+C -(AVB)VC,B+C
(AVB)=C,A+C (AvVB)=C,B+C
(AVvB)y=CrA=>C (AvB)y=C+rB=>C

(AVB)=> O r((A=CAB=0)

Note: Homework 2.3 will be to complete the tree on the right side

2.3.8 Summary

e sequent”: ® +¥Y
o “sequent holds”: N ® = \/ ¥
o “inference rule”: 3¢ iff (if Sy,..., S, hold, then S holds)

— Set of inference rules: “calculus”
e proof (tree): tree

— atree is a graph with properties
% root (is ancestor of all nodes)
* leaves (nodes which have no successors)
* some nodes have successors

— atree “is a proof of S 7 iff

1. § is the root of the tree
2. Whenever S1,...,S, are successors of a node S they are an instance of an inference rule.
3. The leaves are the axioms

2.3.9 Calculus: “The small calculus”

2.3.9.1 Calculus definition

_|? /\’V
] premises \ conclusions \
O+, O Y +Y
- (I)—QD (ﬂ l—) !//— (I— —|)
,—|(pl-lIl )] I—‘P,—uﬁ
D, 01,00 Y O+Y, O+Y,
A ©1,$2 (A ) Y1 Y *A)
D, o Apa b O+, ¢ A
() Y ] Y Oy,
v , 1 , P2 v H) W1, ¥ V)
(I),(p1V(p2|-\P (Dl-ly,l//]Vlﬁz
Axioms:
e O, p+-Y, o

e OrV¥isaxiomif ®NY # 0
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2.3.9.2 Calculus properties

e “correct” iff (if a sequent has a proof, then the sequent holds)

e “complete” iff (if a sequent holds, then it has a proof)

This can also be expressed in traditional logic:

OrY if OEY

Note: Homework 2.4 will be to prove informally: @ + ¥ holds iff ® = ¥

Note: ® = ¥ can be read as “is a semantical logical consequence”

27
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Third Lecture on 27.10.2005

3.1 Recapitualation of 1st Homework

3.1.1 Task 2 (Grammar for propositional Logic)

T,F,9e £, 9€0®

z = { (@), (@A), (e V), (g = ¥), (g & ¥) € L, where g,y € L
"These are all"

Now let’s define the grammar:

» _{ WoT|F|IA|B|IC

Grammar G = ( z

"alphabet"

Zy

fex. aWp = a(-W)B

or more general: ® = {A, B, C}
Wo(EW)I(WAW) ...

2 Z:1\’ ) S
—— ——
"nonterminal "nonterminal
symbols" start symbol"

(T, Flu®U{(), -, V,A, =, &}
W)
= ZN

L ={a|W="2)

W — v, foreachv € {T,F} U ®

P
~——

set of
productions

(the language is the transitive closure ("transitive Hiille"))

3.1.2 Task 1 (Comments and Questions)

Some answers were provided to comments

28
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TODO: ... insert all of these answers

One answer about the usage of some symbols in this course:

iff ... if and only if (logical meta-level equivalence)

semantical equivalence of formulae

i
N

object level equivalence

¢

"is transformed into", also "from something we can obtain something else"

3.2 Propositional Logic - Recapitulation

Syntax / Semantics (Notions of interpretation and truth evaluation)

Valid / Unsatisfiable, |= (semantical logicial consequence), = (semantical logical equivalence)

Rewriting, fex. AAB)VC~ (AVC) A (BVCO)
—— S——

clause clause

— CNF: conjunction of disjunction of literals

proof systems

examples

sequents, inference rules

proof trees

“calculus” (the “short™)

3.2.1 Sequents

“Prove a formula ¢*“: show that ¢ is valid

In practice, our formulae which we want to prove are of this type:

©LA--ANp, = ¥ "proof situation"

Note: In ¢y, ..., ¢, F ¢, the symbol F is only “notation” and “has no meaning”, because it has no definition.
It is just a notation for ({¢y, ..., ¢,}, ¥). Later we will overload this symbol.

But on the other hand, | has a definition:

if AANBEB
then: Forall 7,if (AAB); =T
then (B); =T
The sequent @ + ¥ holds iffd v
———

iff (A®= VYY) isvalid
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(o1, ..o @n} F Y1, ... ¢m}) holds
iff
(o1 A= Apy) E W1 V- Vi) is valid
Problem: The sets of the sequent could also be empty sets, f.ex. {A, A} + {}, and we should also consider

this case !

<\/ {WI,‘J’Z’W3}>[:T <\/"I”>I =T
iff iff
W)y =Tor (Ya)y =Tor (Y3); =T for some ¢ € ¥, (Y); =T
there exists ¢ e ¥s.t. (Y); =T

So in case V/{} !
false l y € O s.t. ...

ergo \/{} =F
</\ {'ﬁlslf’z,l//3}>I=T </\\P>]=T
iff iff
W)y =Tand (Y2); =Tand Y3); =T forally € ¥, (), =T
forally e ¥: (Y); =T

Soin case A {} { !

true ! this is always satisfied
ergo A{}=T

VY || Gy :yeV)Wr =T | @) :ye¥AWY), =T
AY | Vg e V)W =T | W) :ype¥= W) =T

Analogy:

' . C (@x)xeR=>
IxeR:xeQ | AxeRAXEQ ‘“COH@CLM

VxeQ:xeR | (Yx)xeQ=>xeR | incorrect: ({x)x eQ@ATER

VO =T iff Jpe®:{p);=T Jp)p e DA {p); =T
NVhHr=F Qp) o} A...} F
——
F

AN®)r =T iff Voe®:(p); =T Vo)pe @ = (p)r =T

(AHr=T Vo) pef} =...0 T
——

F

Sequent® + ¥

e N
if left side is empty: {} - ¥ if right side is empty: @ r {}
also written: FY also written: D+

(this is like having no assumptions)



CHAPTER 3. THIRD LECTURE ON 27.10.2005

@+ ¥ holds iff ( /\ o= \/‘P) is valid
({1, osn) F ... ¥} holds) it ((p1 A= Agp) = W1 V- Ay)) is valid

(=@ A A VLV A))

(21 VeV mu VYLV - An)

3.2.2 Inference rules

- - Sy . Set of sequents
We have introduced the notation % with the meaning %

g S ("is an inference rule")
IT ! iff (if S1,...,S, hold, then S holds)

3.2.3 Proof tree

e The root is a sequent (“assumptions’)
e The edges of the tree are inference rules

e The leaves must be axioms

Ay Ay
ST 8y A"
S S5
Sy S,
S

3.2.3.1 Tree

A tree is is an oriented graph (G, —) where - C G X G

e

X

"arrow” x "is predecessor of" y
Y y "is successor of" x
Succ[x] = {yeGlx—>"y}
Note: To be precise, S ucc[x] has an index (G, —), but this is usually not written (implicit)

Tree (restrictions to the graph)

o there exists a root which is unique ¢ € G, Succ[t] = G\{t}, Pred[t] = {}
eanyt #¢t:dls:s -7

o “leaf”: Succ[x] = {}
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3.2.3.2 Proof tree as a special tree
Proof tree (with respect to a set of inference rules %) of a sequent S:

"having the property that"

)
e Isatree (G,—) :
— G is a set of sequents
Whenever S"_'g",S; €A,
o then [S'] — [S”],...,[S,]
— — isinduced by 77 (Notation: [s] are instances of s)
——

se{S,81,....8}
the root is S (the sequent which we want to prove)

the leaves are axioms

. ety 1. AB=20FC
Note: |:¢1/\¢2H//:|' AANB=C)-C

"instance"

3.2.4 Calculus

A calculus € = X o

N—— N——
"inference rules" "axioms"

Theorem: If there is a proof tree for S, then S holds ! (“correctness of calculus”)

3.2.4.1 Short calculus

ﬂ? /\’V

Z is given by the table:

| [ - \ A | v ]
. (ORI N O, 01,00 Y
assumptions b opr W (=F) b Ay (AH)
O, +-Y (ONE VSR O N /28
1 —_— = A
goals orw, oy 7 Or Vg Aw, N

A ={OrYIDNY #{}}

Note: Homework 3.1 was to formulate the rules for v

3.2.4.2 Correctness of an inference rule

Correctness of (- +)

if ®+ ¥, ¢ holds then @, —¢ + ¥ holds
——— ———

TP VeV g, VoV Ve Vi,
valid T
works in other direction !
("also reversible")

TPV Vo Vo g Vg Ve Vi,
——

Y
valid
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Note: ® ={¢y,...,¢,} and ¥ = {1, ..., ¥,,} could also be empty !

Note: Homework 3.2 was to prove the correctness and the reversibility of the rule (- —)

Correctness of (A +)
(AP A1 Agpa) = VYY)

(AP A (1 Ap2) = VYP)

Correctness of (- A) This:

@ = (\/‘I’)Vlﬁ] Va/l\id w = (\/‘P)vwz

a Bi a B2

a valid and g valid iff (@ A B) valid ... %, ((a)1,{B)s)

can be transformed to:

w = (V¥)veirp

a ﬂ] /\ﬁz
because:
(@=pB)A(@=>p) =
(CaVBDA(maVB) =
—aV(BiAB) = a= B AB)

Note: Homework 3.3 was to prove correctness for the rules of disjunction.

e Tip: use axioms and rules, f.ex:
PAND) =V (VYY)
~ova(A\@)vev(\/¥)

T

Every "atom sequent" that holds, has this property: {® ¥ | ®NY #0
————— ~——

A,B+C,A, B f.ex. here
itis {A, B}
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3.2.4.3 Completeness

if®O,¥YCO® ,then

®+Pholds iff ®NY=%0
=

®+Yholds iff (@®rY¥Y)ed

(I)I{Al,...,An}, \P:{Blw--’Bm}
Assume @ + ¥ holds: =A; V---V=A,V B V---V B, is valid

By contradiction: Assume ® "Y' =0

oY
901»---,90171"¢1,---»¢m

OV Vo VY Ve

if @ is the empty set, then the ¢’s are not present, only ¢ V ---V i,
if W is the empty set, then the y’s are not present, only -, V -V =gy,

3.2.4.4 Proof for correctness

A+ B,C, A (is axiom)

A,—At B,C ABrp,c USiom
A,(=A)VB+ B,C
A,(mA)VB + BVC
(is a)
10 l
l S : sequent: there is a proof tree with axiom-sequents as leaves

S holds !, then: all leaves hold !
Thus all leaves are axioms

Hence, the tree is a proof tree

3.2.4.5 Number of logical connectives over sequents

L(S) : the number of logical connectives
——

n

if S holds, then there exists P proof tree for S

V hm

34
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n=0: S is atom-sequent: S is axiom!
n>0: forall S’  with L(S) < n, there exists P’ proof tree for S”.
(holds)
S holds

L(S) > 0 there exists [/ logical connectives in S
SilS21 (D
S (Ir)
81,87 hold: L(S) < n,L(S,) < n (because [ is eliminated)
By induction  hypothesis there are P[, P,] proof trees for S{[, S;]
P, P,
S S»

by inspecting inference rules, there exists R :

Thus we have P : (proof tree for S)

For a sequent ® + ¥, we have seen that

A V---V-A,VB V---VB,
D ={Ay,.... A}, ¥ ={B1,..., By}

and the interesting part of the proof & was:

Ay=---=A,=T B B
{Blz---:Bm:IF A=y T A =F
So:
if ®,¥ c ® U {T,F}
ONY 0
® + ¥ holds, then ® + ¥ € &7 with Fed
TeV¥Y
“Short calculus” for .Z with {T, F} :
A = (O+rPONY+{} orFedorTe V)

3.2.4.6 Extending the calculus

“Short calculus” is nice, but one also wants other rules, so we add this rule to our calculus:

p=>Y AR

O, Y

m if Q= tpl (E'—), similar (I—E)

The calculus is still correct (because each rule is correct) and complete.

35
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Now let’s add implication:

. L . O, ViV OrY,—pVy
implication rule (1st version) —— =) | —— (>)
(ONGECSTE S OrY, o=y

We see that we can obtain a simplified version, which is still correct, because it was created by applying
the existing correct rules:

OrFY, (ONVE N/
. . - ] O, -+ oy OrY, -,y
creating by applying existing correct rules: DGV (=hr) DET, oV U (=)
D=y r¥ PrY, o=y
Simplyfied version:
OrY (ONVEE S Do+ Y,
implication rule (2nd version) 5 ";; J j’\y (=) Qﬁw (+=)

This is an advantage of starting with a simple calculus and then adding rules.

One can also see it in the way, that one starts with a big calculus and then eliminates the rules that can be
inferred by other rules, so one gets a “minimal” calculus.

Introduction of modus ponens

axiom
——
O,orY, 0 O,0,y+rY
.0, 9=y r Y

so this is eliminated, so that the rule for modus ponens is:

O,0, 0 Y
(ONTRVESSVEE 4

Note: Homework 3.4 is to formulate two rules for equivalence <, and prove their correctness (“eliminate”
them) using other rules.

Notion 1
This relation @ +4 ¥ holds iff there exists a proof of @ + ¥ in €

Note: ¢ means a “syntactical logical consequence” or also “syntactical entailment”

Notion 2

What we want is

Drew O Aok \/ ¥

"completeness"

=
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Fourth Lecture on 3.11.2005

4.1 Recapitulation of Homework 2

4.2 Proof system which is more suited for computer implementation

4.2.1 Proof using unsatisfiability

It is tedious to obtain the CNF in this form:

(A=>P),(B=>P) £ (AVB) = P
(A= P)A(B= P)) = ((AV B) = P) is valid
~((=AV P) A (=BV P)) V (~(A V B) V P)
-(=AV P)V~(=BVP)V(=(AV B)V P)
(AA=P)V (BA=P)V (A A=B)V P)
(AA=P)V (BA=P)V((~AV P)A (=BV P))
(AV (BA=P)A(=PV (BA=P)V(=AV (=BV P)) A (P V (=B V P))

Another way is (similar to proof by contradiction):

showing; N EY is valid I
=

(1 A A+ A,) = ) s unsatisfiable

by showing: | = (= (p1 Ay A+ A@,) Vy) is unsatisfiable g E ’]EZ
CILAPI A= ANy A=Y is unsatisfiable
Applying this to the above example:
showing: (A=P)ANB=>P) > (AVB)=>P) is valid

A=>P)AB=P)N - (AVB)=P) is unsatisfiable
—,—————

-(=(AVB)VP)
by showing: (mAVP)A(=RBVP)ANAV B)A=P is unsatisfiable
(AVP)A(BVP)A(AVBYAP in CNF !

CNEF: conjunction of clauses, each clause is a disjunctive set of literals.

This could also be written this way:

AV APV (B P .51\ (PY)

37
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4.2.2 Example proof

For an arbitrary 7 :
(Z v P>I =T ,then (by (1)): (Z)I =T,(A); =F

BVP ,then... (By; =F
—)
AV B contradiction (AVB); =F

<P>I =T ,then (P);=F (1)

4.2.3 New scheme to write this proof

AVP A Contradiction !
Empty clause \/{}
BVP B A
AVB
P

Figure 4.1: New schema to write this proof

Sequent calculus: “Gentzen style” @ + ¥

Set of assumptions ® to show @ = ¥
s » o new. . obtain a new formula
Hilbert style™: ... assumptions | inference rules " "
from "known" other ones
bd

Note: in “Hilbert style”, the set of assumptions is never changed

4.2.3.1 Rules

Note: In the following rules C; etc. denote Clauses, whereas L denotes a literal, O denotes the empty
clause

Clszc;} -
T 1

CQIL

Can be used to delete the literal where the opposite is present:

“Resolution inference rule”:
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civ @
————
"resolvent of the

clauses Cq, C,"

C12LVC/1 o
C22LVC§

For example:

AVBvVC

ZvaPvQ} ~ BVCVPVQ

4.2.4 Correctness of the resolution rule

LVC,LVC), E C,VC

Proof:

For an arbitrary interpretation 7

S (Ly; =T : (otherwise (LV C;) =F) (Cj) =T
LV Oy =T=(LvC), cases { (L), =T : (otherwise (L v 02; )I] =F) (C?)j = T.thus (C] vV ;) =T

CiNCy, # CiVC;'
CiNGy Cl/\Cz/\(CiVCé)

. . . A .
“resolution principle” = inference rule

“resolution method” £ applying resolution principly until you reach the empty clause

AV B —
ZVE} 8VE
T

4.2.5 Prove completeness

Completeness: every time it is unsatisfiable, will I get the empty clause ?
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4.2.5.1 Semantic Tree

Figure 4.2: Semantic tree

o AT
{A,B,P} : B«—F
P«F

Clauses (compare tree in figure 4.1 on page 38):

1.AvVP

® N A DD
= |

Vi

Using these clauses, one can close the nodes, which do not satisfy the clauses. In the following figure,
closed nodes are shown crossed out and annoted the corresponding clause:

O 0 0 0 0 o

Figure 4.3: Semantic tree with closed nodes (1)
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The closed nodes form a border within the tree, so that the areas below the closed nodes are no more
reachable:

border

Figure 4.4: Border within the semantic tree caused by closed nodes

There must be at least one node, where both brothers are closed:

VANVANVAN

both brothers closed only one brother closed

Figure 4.5: Both brothers closed versus one brother closed

So when both brothers are closed, then

Ch Cs
— =~
IvC, VG,

Figure 4.6: Consequence if both brothers are closed

We see that this principle applies, when we iterate over the clauses again (starting from our tree of figure 4.3
on the previous page):
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Figure 4.7: Semantic tree with closed nodes (2)

And finally

B (empty clause)

Figure 4.8: Semantic tree with closed nodes (3 and 4)

42
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4.2.5.2 Replacement for tree

Instead of the tree, we will use the following steps:

1. PYOVR - QVR
2. PVR

. R

4
5.(12) QVR
6. (13) PVR
7. (14) PV Q
8. 24P
9. 53)R
10. (5.4) Q
11. (7.3) P

12. 9.4)0

Figure 4.9: Tree for replacement

- A
"unit propagation": \/ P } \/E {
AV B

L: CVL » C
CVL +— removed!

= =
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L

N\

set

Figure 4.10: Davis Putnam

PvQ P {g -0
itial PV Q J Q
1nitial set PV@ N 0
Pvo P {@ .
0
P:0
PvQ / N0
{FVQ
R 0
N Pig s
N 0
R«T
v N
T—P PeT
l l
T—-Q QT

(PAQAR)V(PAQAR) ... Davis-Putnam method also generates a NF

Note: Homework 4.1 was: Can we see the “short calculus” (-, A, V) as a normal form algorithm for

44

e sequents (what would be a good normal form ?) (could be a formula, or conjunction of sequents

o propositional formulae ? (DNF)
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4.3 First-order Predicate Logic

Syntax Semantics

* function over
interpretations

Figure 4.11: Syntax and Semantics

Previously, we had the formula: (¢y,...,¢, F¥)iff (o1 A -+ A @, = ) is valid

One could rewrite this to be more precise:

Y or..ons: Formulael$S emanticalLogicalConsequence (S etO f (@1, ..., @,) ) ©
& isValid (Quote (Implication (And (¢4, . .., ¢n) ,¥)))

Or even further:

Yor,ony UsFormula (p1) A - -+ A IsFormula (p,) A IsFormula (f)) =
(isS emanticalLogicalConsequence (S etOf (¢1,...,¢,),¥) &
& isValid (Quote (Implication (And (@1, ..., @) s ¥))))

Note: Yy, .. ¢.p 18 a “shortcut” for ¥, ¥, ... ¥, Yy

Formulae:

e terms

— variables, constants

— function symbols
e quantifiers
e logical connectives

e predicates

4.3.1 Definition of syntax

Language of terms .7

2 Languages { Language of formulae %5
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4.3.1.1 Language of terms

P €0,ce ¥ : are terms

fe#, t,...,t,: terms, then
Zr .
f(t,...,t,) is term
(these are all !)
variables  constants
l l
° ® s 4 are (infinite) sets of symbols

e F : set of “functional symbols”
f = UneN g\n
— each .%, is infinite
- %, N %, =0 (disjoint)
- fe.%,: “fhas arity n”

* if n = 0, we don’t write f(), but f, which is a constant
x 06 = %

4.3.1.2 Language of formulae

peEZ, t,...,t,: terms, then
P(t,...,t,) is formula ("atom")
L @, ¥ formulae, ¥ € O : Yy, g0,
O, ANYL OV Y,

¢ = Y, ¢ & ¥ are formulae
(these are all !)

o & “predicate symbols”

- P = Umen P, each &, infinite,
- Z,Nn P, =0 (disjoint)
- p€ P, : “phasarity m”
* if m = 0, we don’t write P(), but P

46

* P ~» propositional variable, so propositional logic is a subset of first-order predicate logic

4.3.1.3 Example

For every two points, there is one and only one line through the two points

ViV P() AP(y) = L) ATz )

P(x) : "xis point"
L(z) : "zis line"
T(z,x,y) : "z passes through x and y"

Schema for “there exists exactly one”:
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AMP(x) ¢ A P(X) A |YPOY) = (x=y)
———
more precise: Equal(x,y)

Written without 3!-Usage, and demonstrating terms “scope” and “bound’:

V¥ | P AP(Y) = T (L) AT x,) AV | (UD)AT(@,x,y) = (1 =2)

<

scope of the ¥, quantifier

scope of the 7 quantifier,
variable z is bound in this scope

1, x < vy

T T
bound free
T
which y ?
T

no meaning is assigned to y

Only list has a variable arity

(L,a, f(2),3,9)
(x,5)

List ((1,a, f(2),3,0))

List ({x,5))

Vi Voy () =X, y)y=>x=x,y=y

In First-order predicate logic, you cannot have this flexible arity

4.3.2 Semantics

fransy I — {T,F}
)
interpretations
"domain". .. D=+0
constant symbol. . . creD
I functional symbol...  fr: D" — D
(arity n)
predicate symbol ... py: D" — {T,F}

(arity m)
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Example:

<Vx3yx < y>I = T iff foreachd € D :

<E|yx < y>‘[i‘<—0} M <3yx = y>{Ixed]

T
(X < Veeoye0) 31=7),

=1 <<‘x>£(<—0,y<—0} > <y>{jx<—0,y<—0])
<r(0,00=T
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Fifth Lecture on 10.11.2005

5.1 Example: predicate logic formula, interpretation and truth eval-
uation

Yi(P(x)= 0(f(x),a)

D=1{1,2)
a;=1 (eD)
D fr)=1
Jrib=b {f](2>=1
fex. I : . P (1)=T
ex Pr:D — {T,F} {PI(2)=]F
(O [ 1[2]
Qr : D* - (T, F} 1 |[T|F
2 F|T
M(Px)=0(f(x),a)); = T
iff
(P)=Q(f®),a),y = T  (foreachd e D)

So for each element of the domain there is a case:

e Cased =1:

P = QU ).y = B ((P,Cyy Q0.0

= B (Pr(icyy)> O (F Oy @)
P (Pr () Or (Fr (i) @ficy)))
B

= (Pr (D, 0r (fr (Wfiyy) - az))
= B (T, Q7 (fr (1), 1)) = % (T, 07 (1, 1)
= Z.(T,T)=T

49
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e Cased =2:

(PO =0(f (). @)y = ... =T

Problem: infinite Domains ! this requires more clever techniques (because no explicit definition of the
interpretation is possible)

Also note that writing P (1) = Q (f (1), a) is not correct, because the elements of D are not in our alphabet.

So one uses the trick, that one adds the d € D (of the respective interpretation) to the alphabet on-the-fly.
This must be done for each respective interpretation.

5.2 Different domains (‘“‘types’)

isString Len isString["a string"] = T
isReal Abs isString[14] = F

Figure 5.1: Classes of the domain strings and reals

VisString(s) = Len(S) =1+ Len(Tail(S))
s # EmptyString
ViisReal(r) = (rz0=Abs(r)=r)A@<0= Abs(r) =-r)

Abs("Something") — is no "mistake", only cannot evaluate

. 1 . . .
like in Mathematics, 0 also is no syntactical "mistake", only cannot evaluate

In C-like syntax:

Real Abs(Real r) {
if (r>0) then r
else (-r)
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5.3 Truth evaluation (¢);

5.3.1 Formula

T,F
P(ti,... 1, (P(tr,....t)e = Pr (¢l ... el
o = Za (@)l . w)?)
¢, Q
v ¢Tw (¢ = Z- ()

€NV, >, e}

Vge (¥ : variable symbol)

Vo), = T iff
(for each d € D, (). 1y gy =T)
(of the interpretation 1)

Jds¢ (¥ : variable symbol)

V. P(x) = 3,0(x,y)
e Ny -

But what if x is already bound:

V.P(x) = 3,0(x, x)
Ny Ny e Y

I
A Nedyed

1

which x ?

" modify the assignment !
(replace any other {} « ...} !

All variables must be bound.

(Jog)y =T iff
(for some d € D, (@)% y9qy = T)
(of the interpretation 1)

{x —d,x < d}

All free variables are present in the assignment @

5.3.2 Term

¥ (e variable symbol set)

e =N peq.,=d

(assume that there is such an assignment ¢ < d)

¢ (€ constant symbol set)

I
(CYy =cCr

f (e functional symbol set)

(f st )e = fr (08 ()2
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5.3.3 Equivalence

Syntax Semantics

) [

Figure 5.2: Syntax, Semantics and semantical equivalence

Then we can define equivalence of two formulae ¢ and i as that they’ve got the same semantical function.

O = ¥ semantical logical consequence

o - (vx(ﬁ) = 4, (_‘()0)
(Fp) = VYi(-p)
& VileAy) = (Vo) A(VY)
Alpvy) = GQwp) vV EY)

Velp Vi) = (V) Vi if xiy
A (e AY) =) A Y "does not occur”

Substitution:

We try to prove ¢:

For arbitary interpretation J :
(V) = (=Y = B ((V.))

=F iff ((V.)f =T) iff
foreachd € D : <‘>0>{1;<—d] =T
=T iff

=

(-3, =F) iff forsomed € D: (g}, 5 =T

{xe—d

Note: Homework 5.1 will be to prove 4, Homework 5.2 will be to find an example where this equivalence
does not hold: o A Y # o A A0,
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5.4 Example to see how people prove things
The situation:

A sequence f is convergent: J,crY ceR eV peN lf(p)—al <€

e>0 p>n
®
01 3/1
fiNoR |[1] /4
foy =32 | (2100
131910
2
3
(0.
€ €

“in our syntax”:
J@eR)AV(e€eRANe>0) =T, (neN)AY,(peNAp>n) = |f(p)—al<e
Note that |f(p) — a| < € could also be formulated as Less(Abs(Minus(f(p), a)), €)
VY risS equence(f) = (isConvergent(f) & ¢)

Note that isConvergent is a predicate over a function, so this is “second order” predicate logic, where one
can have predicates and functions applied to first order formulae. The general term is “higher order”
predicate logic.

If f, g convergent, then f @ g is also convergent:
V g6V nen (f®8)(n) =fm)+gm) {  higher order
S

Plus(f, g)(n) "currying"

v (IsConvergent(f) A IsConvergent(g)) = IsConvergent(f & g)

1.8
IsS equence(f)N
IsS equence(g)

Note: f, g are arbitary but fixed here
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f.g: IsSequence(f),

IsS equence(g)
HaERv eecR 3nENV pE N |f(P) - a| <€
€e>0 p>n
) IsConvergent(f) /
Assume: { IsConvergent(g) ~\,
JuerY cecR Jpenv peEN lg(p) —al < €
€e>0 p>n
Prove: [IsConvergent(f ® g) d.erY ceR FpenV peEN (fegp) —al<e
e>0 p >n | replace with:

f(p) +g(p)

V. IsS equence(f) = (IsConvergent(f) & ¢)

instantiation IsS equence(g) = (zsConvergent(g) =X f-<_g)

Used for proof
vaD o ()Dm—t
o
poyrY
As: "take"a; €eR: YV eRr o fe< 3
€e>0
At "take" ar €R: Vieer 8<%
e>0
G:"use"a—ar+ay | ¥ __p Denl(f(p)+8(p) - (a1 + @)l <&
€e>0
€ € R
a;+a; €R 6 >0 assumptions

inference rules (assumptions) \ inference rules (goals) \

Y v ey b FVp ok Pxea
(a "is new"
(agp)
A b Prea F F 3 ok @y
(a"is new")
(agy)

Note: Homework 5.3 was to finish this proof

5.5 Sequents

] inference rules (assumptions) \ inference rules (goals) \
(I)’ ‘px<—a [ \P ° (D F ‘{’9 lﬁx«—f
R (A+) where a¢p, O,V OrY.a0 (+3)
D, Pxet F b4 DY, Yrea °
D Vgt ¥ ~H) AR +VY) where a¢y, O,V

Note: first we will study the proof system (resolution) and we will infer as a consequence the proof for
correctness and completeness
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5.6 Prenex

A “prenex formula” is of the form:

(Ve 33Vi...) ¢
N ——
all quantifiers ~quantifier-free formula

The quantifier-free formula part can be transformed into CNF

"prenex formula"

(with the quantifier free formula part in) CNF } prenex normal form

So, a formula in prenex normal form somehow looks like:

(Vi3 (Ve V) A AV VL)

5.7 Skolem transformation

A “‘skolem transformation” is 4, P(x) ~w> P(a)
if this is sat —» then  — thisis sat
this is sat «  then <« if thisis sat

Assume that we have an interpretation 7 that satisfies 3, P(x)

D D
I Pr: D — {T,F} - 1 Py =Py soPr(ar)=T
forsomede D : Pr(d)=T ap =d

Note: Homework 5.4 will be to prove the other direction P(a) — d,P(x)
—— —_——

assume prove

(. satisfiable) iff (¢, satisfiable)
and more interesting:

(d¢¢ unsatisfiable) iff (¢, unsatisfiable)

V. d,P(x,y) — Y P(x f(x)
I,...(D,P]) I-~~(D’PI’fI)
foreachd € D foreachd € D
(there is d’ € D, Prd,frd)=T
Pr(d,d") =T)

take d’ = f7(d)

Note: Homework 5.5 was to show the other direction —. Hint: Take an interpretation which is sat on the
LHS and show that it is sat RHS.
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(Vxﬂygo unsatisﬁable) iff <Vx¢,oy(_ ) unsatisﬁable)
where f¢o
and more generally:

.....

So, by skolem transformation, one can eliminate all the 3-quantors.

(VA T,) (Ve V) A A VeV L)

CNF
| "skolem transform"
V.o Vy,) (C-V-VOL)A A V-V L)

CNF

One does not need to write the quantifiers (Vy, ...V,,) any more ! You simply assume that all are universally
quantified.

5.8 Resolution

. .. LV Cy

“Resolut le”: — c,vcC

esolution principle LvC, } 1 2
For example:

V. P(x) = O(x) P(x) V Q(a)
P(a) } O(a) P(a) O(a)
_ L,V C

If (Lyo = Lyo), LV, } CioVv Cyo

For example:

_ instantiate
P()C, a) \% Q()C) {)C — b} P(b, Cl) \Y% Q(b) Q(b) Vi R(a)
_
P(b,y) V R(y) {y « a} P(b,a) vV R(a)
Substitution o = {x « b,y « a}
Yoo Vo, .. Vo, 090

{h,...,0,} = FreeVars(t)
Correctness: LiVC, LV CioV Cor A ((LI VCA (Lz \ Cz)) = (C; Vv ()
. (where Lio = Lyo) )
(Vs .-V L1 vV Cy)
(Ve - Yo Lo v o)
v Completeness: If ¢ unsatisfiable, then ¢ Fg.; O (the empty clause)

E (Vxl .. .Vxncl \% Cz)
Roughly sketch the proof

deD @ pea =T
T

,,,,,
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Sixth Lecture on 24.11.2005

6.1 Recapitulation of the Lecture until now

e Propositional Logic

e Predicate Logic
For those, we have discussed:

o Syntax, Semantics

- %I
— D7 AP

e Proof systems

— sequent calculus (“natural deduction””) DNF

* “short calculus”
- =, V, A: completeness
- Elimination of inference rules by using other
x Y, 3
— resolution (clauses, normal form)

% correctness, completeness

* Now, one should know
- how to transform into NF (skolem / prenex)
- how to do proof with resolution

6.2 Questions and Answers

6.2.1 Q1: Difference Correctness / Completeness

With the sequent calculus:

57
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(obtain a proof tree)

8
syntactically
l
e Correctness: if | proved then (¢ is valid)

o Completeness: Whenever (g is valid) then (you are able to prove ¢)
And with resolution:

e Correct: Whenever you can obtain 0O, you know that it is unsatisfiable

e Complete: Whenever it is unsatisfiable, you will obtain O

Sequent calculus:

5152 Correctness/Completeness: Because both directions (T]) work for each rule

6.2.2 Q2: Allquantors

inference rules (assumptions) | inference rules (goals)

q)’ 90th - \P (v |_) (D - ‘IJ’ wxea
D, VoY OrY,V

(V) where agy, ©,¥

For example (see example with convergence):

in order to prove it for all
itis enough ...
... to prove it for one constant
which somehow looks strange

replace €

oy Ve df Ll <€e b Ve if fHg...|<e€
with a new term J

if ...[<3 FooLL0f feg.. <
The clou of the proof is how define this term .

6.2.3 Q3: Predictate logic proof tree

f.ex. the convergence example can also be written as a proof tree

Example showing the essence:

modus ponens
Pla) = P(f (@), P(f (@) = P(f(f(@),P(a) v P(f(f(a)
YiP(x) = P(f(x),P(a) v P(f(f(@)

This corresponds to A = B,B = C,A + C

or
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.............................. FP(f(f(a)
ViP(x) = P(f (X)), P(a) + P (f(f (X))

F et
F Ay

(replace with a) (replace with term)

or

ViP(x) = P(f(x)),P(a) v Y.P(f(f(x)
YV P(x) = P(f (x),V:P(x) v Y P(f(f (D))
P(f(f b))

6.3 Resolution

6.3.1 Resolution principle

The resolution principle, which is an inference rule:

L,V (C

LV G, } Lio=Lo+ CioV Co

( formulae which are not ground are [V,] ) P (x, f(a)) V O(x)

— i
implicitly universally quantified P(b,y) V R(y)

} O(b) VR(f (x))
———

"they are ground"
Substitution o = {x « b,y « f(x)}

6.3.2 Resolution method

The resolution method is a proof system:

e Correct

e Complete

“Apply the resolution principle until you obtain the empty clause”.

6.3.2.1 Correct
Liov Cio
LoV Cyo

Foralld € D : (P(x))f, s =T

Y, P(x) E YyP(f ()
x < f
P (x) F P(f ()

VP (x)V Q(x)

V. P(x) VR E V.0 VR(x)
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Foranyd € D:(Q(x) VR, g =T

2, (PO, @)
= By (By (P, y) Q)

6.3.2.2 Complete

For doing this, we will introduce a special domain (“Herbrand universe”)

H = {a,f(x),f(f(x),...}(setof ground terms, which is coepymerable)
H, = {constants }
Hy.1 = Hi U{terms obtained by applying all functional symbols to all elements of Hy}
H = U H; (can be constructed in a systematic way)
keN
H
I: fr:H—>H fr@® ="fC -t~-")" (where - denotes a concatenation of strings)
Pr: H— {T,F}
M = {P@,P(f(a),P(f(f(a)),...} ("atom set": set of ground atoms, which is cocyymerable)

An interpretation J is a list of ground literals (some are positive, some are not).

One can write all possible interpretations as a tree.

P(a)

Oenumerable

Figure 6.1: ”Semantic tree”

H-satisfiable iff satisfiable

Iy < (over some 1 /D)
Take M and evaluating ground terms M = "P(a)” "P(f(a)” ...
T T

Pr(ar)=T Pr(fr(ar)=T
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So practically it is sufficient so speak about terms ”P (a) ” instead of Py (ay) =T

P(a) M
P ) v P(f(x)
P(f(f (@)

So we can close the nodes

Figure 6.2: Semantic tree with closed nodes

= The semantic tree is closed

Now if it would not be closed, one would have an infinite path somewhere where all clauses evaluate to
true.

Conclusion: If ¢ is unsat, then the semantic tree is closed

e P(a)
A — S x<a
ivE | | sPUG @)
BvC * P(a)V P(f(a)
o P(f(a)V P(f(f(a))

Herbrand Theorem: If a formula is unsatisfiable, then there exists an unsatisfiable set of instances of the
clauses in the formula

1. Itis enough to reason about ground instances

2. Each time you introduce a new instance, you prove if it is unsatisfiable py propositional logic

Now this is not really an algorithm, because if it is satisfiable, it would never terminate, therefore this is a
semi-decidable procedure, so undecidable.

There is no better method for 1st order predicate logic.
But, there are decidable classes of 1st order predicate logic.

But that’s not really an limitation in real life from the practical view, because in practice it’s more important
if the answer is here in some time, so an decidable procedure, where the answer is here in 200 years is not
so helpful (= efficiency is more important as decidability)
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6.4 Lifting lemma

ground resolution proof +  resolution proof

. {Res} .. (R .
if o unsatthen ¢ + O if ¢+ , then ¢ is sat

"consistert"
. . . (ND} . es) .
if § is valid, then S ifo <+ T, then ¢is sat

| (there exists an interpretation ("model"))

Natural deduction: “S is provable by ND calculus”

Godels completeness theorem

D, q FY
O, 0+ ¥
)
DO,00 0,V +F
O, Hx(p, Y+ F

If (® A ¢yy) unsat, then (® A 3,¢) unsat
(even iff, so this is an "reversible rule"!)

¢)7 (_"p)xea F
D+ prea D, V. F
OFV,p ~——
Elx (_'(;0)
not reversible @, ., F D,V 0, Py F !
! D,V 0+ D,V + T

So the rule If &, +F (unsatisfiable !)
is correct then @,V,o+F (because VY ¢ F ¢rt)

6.5 Predicate logic with equality

= is a predicate symbol

reflexive
equivalence symmetric

. transitive
(¢) properties: iftj =t then Tyy =Txey,
"replacement rule" a=b F fla) = f(b)

7: f(x)

6.5.1 Explicit treatment

We used this in a lot of proofs: AAB=BAA +F C=AAB) =C=(BAA)
fex.Vix=x

fex. V,Vyx=y = f(x) = f(y)
VVyx=x = gxy2) =gx,y2)

“explicit treatment of equality”
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6.5.2 Implicit treatment

Interpretation for an equality formula

D
I = ar, fr, Pr
=7 ... has the properties of equalities (as in ¢)

“implicit treatment of equality”

6.5.3 Inference rules

(I), tl = t2s Txt—tl = Tx<—t2 FY
O, HH=t+Y

6.5.4 Programming language
replacement f; =1 F Ty = Txe,
/
N
substitution Ve b Qrey

Those two principles can be used as a programming language
6.5.4.1 Example with GCD
“Conditional rewriting”:

GCD(x,y) = GCD(x,y — x) (ify > x)

GCD(x,y) = GCD(y,x—-y) (ifx>y)
{ GCD(x,0) = x

Can be instantiated, f.ex.:

GCD(15,12) GCD(12,3) = GCD(3,9) = GCD(3,6)

GCD@3,3) =GCD(3,0) =3

This is also a proof, sequence of expressions obtained by applying certain transformations.

6.5.5 Proof equalities

f.ex.:

(@+1)=(b*+1) = (@+b)x(@-b)

We identify rewrite rules so that we obtain a normal form

In this case of polynomials those are the rules for distributivity and rules for sorting, so that we obtain the
same syntactical form.

There is a general method called Knuth-Bendix completion algorithm (unfortunatly only semi-decidable)

Hint (of the editor): seehttp://mathworld.wolfram.com/Knuth-BendixCompletionAlgorithm.
html
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6.6 Logic Programming: PROLOG

One can declare facts: B(A, J)
And one can declare rules:

VB(x,y) & XB(x,2) A B(z.Y)

(quantifiers implicit)

These rules are like horn clauses, have the form Py A --- A P, = Q
Query:

? B(A,C) x « A,y « C (substitution)
(unification)
B(x,2) A B(z,y)
B(A,J) A B(J,C)

64



