
Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Logic Programming
Using Data Structures

Part 2

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Contents

1 Recursive Comparison

2 Joining Structures Together

3 Accumulators

4 Difference Structures

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Comparing Structures

Structure comparison:

More complicated than the simple integers
Have to compare all the individual components
Break down components recursively.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Comparing Structures. aless

Example
aless(X,Y) succeeds if

X and Y stand for atoms and
X is alphabetically less than Y.

aless(avocado,clergyman) succeeds.
aless(windmill,motorcar) fails.
aless(picture,picture) fails.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Comparing Structures. aless

Success First word ends before second:
aless(book,bookbinder).

Success A character in the first is alphabetically less than
one in the second:
aless(avocado,clergyman).

Recursion The first character is the same in both. Then have
to check the rest:
For aless(lazy,leather) check
aless(azy,eather).

Failure Reach the end of both words at the same time:
aless(apple,apple).

Failure Run out of characters for the second word:
aless(alphabetic,alp).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Representation

Transform atoms into a recursive structure.
List of integers (ASCII codes).
Use built-in predicate name:

?- name(alp,[97,108,112]).
yes

?- name(alp,X).
X = [97,108,112] ?
yes

?-name(X,[97,108,112]).
X = alp ?
yes

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

First Task

Convert atoms to lists:

name(X, XL).
name(Y,YL).

Compare the lists:

alessx(XL,YL).

Putting together:

aless(X,Y):-
name(X,XL),
name(Y,YL),
alessx(XL,YL).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Second Task

Compose alessx.
Success First word ends before second:

alessx([],[_|_]).

Success A character in the first is alphabetically less than
one in the second:
alessx([X|_],[Y|_]:-X<Y.

Recursion The first character is the same in both. Then have
to check the rest:
alessx([H|X],[H|Y]):-alessx(X,Y).

What about failing cases?

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Program

aless(X,Y):-
name(X,XL),
name(Y,YL),
alessx(XL,YL).

alessx([],[_|_]).
alessx([X|_],[Y|_]:-X<Y.
alessx([H|X],[H|Y]):-alessx(X,Y).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Appending Two Lists

For any lists List1, List2, and List3
List2 appended to List1 is List3 iff either

List1 is the empty list and List3 is List2, or
List1 is a nonempty list and

the head of List3 is the head of List1 and
the tail of List3 is List2 appended to the tail of List1.

Program:

append([],L,L).
append([X|L1],L2,[X|L3]):-append(L1,L2,L3).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Using append

Test ?- append([a,b,c],[2,1],[a,b,c,2,1]).

Total List ?- append([a,b,c],[2,1],X).

Isolate ?- append(X,[2,1],[a,b,c,2,1]).
?- append([a,b,c],X,[a,b,c,2,1]).

Split ?- append(X,Y,[a,b,c,2,1]).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Inventory Example

Bicycle factory
To build a bicycle we need to know which parts to draw
from the supplies.
Each part of a bicycle may have subparts.
Task: Construct a tree-based database that will enable
users to ask questions about which parts are required to
build a part of bicycle.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Parts of a Bicycle

Basic parts:
basicpart(rim).
basicpart(spoke).
basicpart(rearframe).
basicpart(handles).

basicpart(gears).
basicpart(bolt).
basicpart(nut).
basicpart(fork).

Assemblies, consisting of a quantity of basic parts or other
assemblies:

assembly(bike,[wheel,wheel,frame]).
assembly(wheel,[spoke,rim,hub]).
assembly(frame,[rearframe,frontframe]).
assembly(hub,[gears,axle]).
assembly(axle,[bolt,nut]).
assembly(frontframe,[fork,handles]).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Bike as a Tree

bike

wheel

spoke rim hub

gears axle

bolt nut

wheel

spoke rim hub

gears axle

bolt nut

frame

rearfr. frontfr.

fork handles

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Program

Write a program that, given a part, will list all the basic parts
required to construct it.

Idea:
1 If the part is a basic part then nothing more is required.
2 If the part is an assembly, apply the same process (of

finding subparts) to each part of it.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Predicates: partsof

partsof(X,Y): Succeeds if X is a part of bike, and Y is the list
of basic parts required to construct X.

Boundary condition. Basic part:
partsof(X,[X]):-basicpart(X).

Assembly:
partsof(X,P):-

assembly(X,Subparts),
partsoflist(Subparts,P).

Need to define partsoflist.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Predicates: partsoflist

Boundary condition. List of parts for the empty list is
empty:
partsoflist([],[]).

Recursive case. For a nonempty list, first find partsof of
the head, then recursively call partsoflist on the tail of
the list, and glue the obtained lists together:
partsoflist([P|Tail],Total):-

partsof(P,Headparts),
partsoflist(Tail,Tailparts),
append(Headparts,Tailparts,Total).

The same example using accumulators

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Finding Parts

?- partsof(bike,Parts).

Parts=[spoke,rim,gears,bolt,nut,spoke,rim,
gears,bolt,nut,rearframe,fork,handles] ;

No

?- partsof(wheel,Parts).

Parts=[spoke, rim, gears, bolt, nut] ;
No

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Using Intermediate Results

Frequent situation:

Traverse a PROLOG structure.
Calculate the result which depends on what was found in
the structure.
At intermediate stages of the traversal there is an
intermediate value for the result.

Common technique:

Use an argument of the predicate to represent the "answer
so far".
This argument is called an accumulator.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Length of a List without Accumulators

Example
listlen(L,N) succeeds if the length of list L is N.

Boundary condition. The empty list has length 0:
listlen([],0).

Recursive case. The length of a nonempty list is obtained
by adding one to the length of the tail of the list.
listlen([H|T],N):-

listlen(T,N1),
N is N1 + 1.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Length of a List with an Accumulator

Example
listlenacc(L,A,N) succeeds if the length of list L, when
added the number A, is N.

Boundary condition. For the empty list, the length is
whatever has been accumulated so far, i.e. A:
lenacc([],A, A).

Recursive case. For a nonempty list, add 1 to the
accumulated amount given by A, and recur to the tail of the
list with a new accumulator value A1:
lenacc([H|T],A,N):-

A1 is A + 1,
lenacc(T,A1,N).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Length of a List with an Accumulator, Cont.

Example
Complete program:

listlen(L,N):-lenacc(L,0,N).

lenacc([],A, A).
lenacc([H|T],A,N):-

A1 is A + 1,
lenacc(T,A1,N).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Computing List Length

Example (Version without Accumulator)
listlen([a,b,c],N).
listlen([b,c],N1), N is N1 + 1.
listlen([c],N2), N1 is N2 + 1, N is N1 + 1.
listlen([],N3), N2 is N3 + 1, N1 is N2 + 1, N
is N1 + 1.
N2 is 0 + 1, N1 is N2 + 1, N is N1 + 1.
N1 is 1 + 1, N is N1 + 1.
N is 2 + 1.

N = 3

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Computing List Length

Example (Version with an Accumulator)
listlen([a,b,c],0,N).
listlen([b,c],1,N).
listlen([c],2,N).
listlen([],3,N).

N = 3

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

List as an Accumulator

Accumulators need not be integers.
If a list is to be produced as a result, an accumulator will
hold a list produced so far.
Wasteful joining of structures avoided.

Example (Reversing Lists)
reverse(List, Rev):-rev_acc(List,[],Rev).

rev_acc([],Acc,Acc).
rev_acc([X|T], Acc, Rev):-

rev_acc(T,[X|Acc],Rev).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Bicycle Factory

Recall how parts of bike were found. Inventory example

partsoflist has to find the parts coming from the list
[wheel,wheel,frame]:

Find parts of frame.
Append them to [] to find parts of [frame].
Find parts of wheel.
Append them to the parts of [frame] to find parts of
[wheel,frame].
Find parts of wheel.
Append them to the parts of [wheel,frame] to find parts
of [wheel,wheel,frame].

Wasteful!

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Bicycle Factory

Improvement idea: Get rid of append.

Use accumulators.
partsof(X,P):-partsacc(X,[],P).
partsacc(X,A,[X|A]):-basicpart(X).
partsacc(X,A,P):-

assembly(X,Subparts),
partsacclist(Subparts,A,P).

partsacclist([],A,A).
partsacclist([P|Tail],A,Total):-

partsacc(P,A,Headparts),
partsacclist(Tail,Headparts,Total).

partsacc(X,A,P): parts of X, when added to A, give P.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Difference Structures

Compute parts of wheel without and with accumulator:

Example (Without Accumulator)
?- partsof(wheel,P).
X = [spoke, rim, gears, bolt, nut] ;
No

Example (With Accumulator)
?- partsof(wheel,P).
X = [nut, bolt, gears, rim, spoke] ;
No

Reversed order.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Difference Structures

How to avoid wasteful work and retain the original order at the
same time?

Difference structures.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Difference Structures

Both accumulators and difference structures use two
arguments to build the output structure.

Assumulators: the "result so far" and the "final result".
Difference structures: the "final result" and the "hole in the final

result where the further information can be put".

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Holes

In a structure a hole is represented by a PROLOG variable
which shares with a component somewhere in the
structure.
Example: [a,b,c|X] and X, a list together with a named
"hole variable" where further information could be put.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Holes

Instantiating lists that contain a "hole":
1 Pass the "hole variable" as an argument to a PROLOG goal.
2 Instantiate this argument in the goal.
3 If we are interested in where further information can be

inserted after this goal has succeeded, we will require this
goal to pass back a new hole through another argument.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Holes

Example
Create a list with hole, add some elements in the list using the
predicate p and then fill the remaining hole with the list [z]:

?- Res=[a,b|X], p(X, NewHole), NewHole=[z].

If our program contains a clause p(H,H), then the goal returns
Res=[a,b,z].

If our program contains a clause p([c|H],H), then the goal
returns Res=[a,b,c,z].

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Bicycle Factory

Use holes.

partsof(X,P):-partshole(X,P,Hole),Hole=[].
partshole(X,[X|Hole],Hole):-basicpart(X).
partshole(X,P,Hole):-

assembly(X,Subparts),
partsholelist(Subparts,P,Hole).

partsholelist([],Hole,Hole).
partsholelist([P|Tail],Total,Hole):-

partshole(P,Total,Hole1),
partsholelist(Tail,Hole1,Hole).

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Bicycle Factory. Detailed View

partsof(X,P):-partshole(X,P,Hole),Hole=[].

partshole(X,P,Hole) builds the result in the second
argument P and returns in Hole a variable.
Since partsof calls partshole only once, it is
necessary to terminate the difference list by instantiating
Hole with []. (Filling the hole.)
Alternative definition of partsof:
partsof(X,P):-partshole(X,P,[]).
It ensures that the very last hole is filled with [] even
before the list is constructed.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Bicycle Factory. Detailed View

partshole(X,[X|Hole],Hole):-basicpart(X).

It returns a difference list containing the object (basic part)
in the first argument.
The hole remains open for further instantiations.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Bicycle Factory. Detailed View

partshole(X,P,Hole):-
assembly(X,Subparts),
partsholelist(Subparts,P,Hole).

Finds the list of subparts.
Delegates the traversal of the list to partsholelist.
Two arguments P and Hole that make the difference list,
are passed to partsholelist.

Temur Kutsia Logic Programming

Recursive Comparison
Joining Structures Together

Accumulators
Difference Structures

Bicycle Factory. Detailed View

partsholelist([P|Tail],Total,Hole):-
partshole(P,Total,Hole1),
partsholelist(Tail,Hole1,Hole).

partshole starts building the Total list, partially filling it
with the parts of P, and leaving a hole Hole1 in it.
partsholelist is called recursively on the Tail. It
constructs the list Hole1 partially, leaving a hole Hole in it.
Since Hole1 is shared between partshole and
partsholelist, after getting instantiated in
partsholelist it gets also instantiated in partshole.
Therefore, at the end Total consists of the portion that
partshole constructed, the portion of Hole1
partsholelist constructed, and the hole Hole.

Temur Kutsia Logic Programming

	Recursive Comparison
	Joining Structures Together
	Accumulators
	Difference Structures

