
The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Logic Programming
Using Grammar Rules

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Contents

1 The Parsing Problem

2 Representing the Parsing Problem in Prolog

3 The Grammar Rule Notation

4 Adding Extra Arguments

5 Adding Extra Tests

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Grammar of a Language

Definition (Grammar of a Language)

A set of rules for specifying what sequences of words are
acceptable as sentences of the language.

Grammar specifies:
How the words must group together to form phrases.
What orderings of those phrases are allowed.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Parsing Problem

Given: A grammar for a language and a sequence of
words.

Problem: Is the sequence an acceptable sentence of the
language?

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Simple Grammar Rules for English

Structure Rules:

sentence -> noun_phrase, verb_phrase.

noun_phrase -> determiner, noun.

verb_phrase -> verb, noun_phrase.

verb_phrase -> verb.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Simple Grammar Rules for English (Ctd.)

Valid Terms:

determiner -> [the].

noun -> [man].

noun -> [apple].

verb -> [eats].

verb -> [sings].

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Reading Grammar Rules

X->Y: "X can take the form Y".
X,Y: "X followed by Y".

Example
sentence -> noun_phrase, verb_phrase:

sentence can take a form: noun_phrase followed by
verb_phrase.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Alternatives

Two rules for verb_phrase:

1 verb_phrase -> verb, noun_phrase.

2 verb_phrase -> verb.

Two possible forms:
1 verb_phrase can contain a noun_phrase: "the man

eats the apple", or
2 it need not: "the man sings"

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Valid Terms

Specify phrases made up in terms of actual words (not in terms
of smaller phrases):

determiner -> [the]:
A determiner can take the form: the word the.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Parsing

sentence -> noun_phrase, verb_phrase

sentence

noun_phrase

The man

verb_phrase

eats the apple

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Parsing

noun_phrase -> determiner, noun

noun_phrase

determiner

the

noun

man

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

How To

Problem: How to test whether a sequence is an acceptable
sentence?

Solution: Apply the first rule to ask:

Does the sequence decompose into two phrases:
acceptable noun_phrase and
acceptable verb_phrase?

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

How To

Problem: How to test whether the first phrase is an
acceptable noun_phrase?

Solution: Apply the second rule to ask:

Does it decompose into a
determiner followed by a noun?

And so on.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Parse Tree

sentence

noun_phrase

determiner

the

noun

man

verb_phrase

verb

eats

noun_phrase

determiner

the

noun

apple

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Parsing Problem

Given: A grammar and a sentence.
Construct: A parse tree for the sentence.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Prolog Parse

Problem: Parse a sequence of words.
Output: True, if this sequence is a valid sentence.

False, otherwise.

Example (Representation)
Words as PROLOG atoms and sequences of words as lists:

[the,man,eats,the,apple]

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Sentence

Introducing predicates:

sentence(X) : X is a sequence of words
forming a grammatical sentence.

noun_phrase(X) : X is a noun phrase.
verb_phrase(X) : X is a verb phrase.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Program

sentence(X) :-
append(Y,Z,X),
noun_phrase(Y),
verb_phrase(Z).

verb_phrase(X) :-
append(Y,Z,X),
verb(Y),
noun_phrase(Z).

verb_phrase(X) :-
verb(X).

noun_phrase(X) :-
append(Y,Z,X),
determiner(Y),
noun(Z).

determiner([the]).

noun([apple]).
noun([man]).

verb([eats]).
verb([sings]).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Inefficient

A lot of extra work.
Unnecessary Searching.
Generate and Test:

Generate a sequence.
Test to see if it matches.

Simplest Formulation of the search but inefficient

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Inefficiency

The program accepts the sentence "the man eats the apple":

?-sentence([the,man,eats,the,apple]).

yes

The goal
?-append(Y,Z,[the,man,eats,the,apple])

on backtracking can generate all possible pairs:

Y=[], Z=[the,man,eats,the,apple]
Y=[the], Z=[man,eats,the,apple]
Y=[the,man], Z=[eats,the,apple]
Y=[the,man,eats], Z=[the,apple]
Y=[the,man,eats,the], Z=[apple]
Y=[the,man,eats,the,apple], Z=[]

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Redefinition

noun_phrase(X,Y) : there is a noun phrase
at the beginning
of the sequence X
and the part that is left
after the noun phrase
is Y.

The goal

?-noun_phrase([the,man,saw,the,cat],
[saw,the,cat]).

should succeed.

noun_phrase(X,Y):- determiner(X,Z),noun(Z,Y).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Improved Program

sentence(S0,S) :-
noun_phrase(S0,S1),
verb_phrase(S1,S).

verb_phrase(S0,S):-
verb(S0,S).

verb_phrase(S0,S):-
verb(S0,S1),
noun_phrase(S1,S).

noun_phrase(S0,S):-
determiner(S0,S1),
noun(S1,S).

determiner([the|S],S).

noun([man|S],S).
noun([apple|S],S).

verb([eats|S],S).
verb([sings|S],S).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Goal

sentence(S0,S) : There is a sentence
at the beginning of S0
and
what remains from the sentence in S0
is S.

We want whole S0 to be a sentence, i.e., S should be empty.

?-sentence([the,man,eats,the,apple]),[]).

Do you remember difference lists?

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Pros and Cons

Advantage: More efficient.
Disadvantage: More cumbersome.
Improvement idea: Keep the easy grammar rule notation for

the user,
Automatically translate into the PROLOG code for
computation.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Defining Grammars

PROLOG provides an automatic translation facility for grammars.

Principles of translation:
Every name of a kind of phrase must be translated into a
binary predicate.
First argument of the predicate—the sequence provided.
Second argument—the sequence left behind.
Grammar rules mentioning phrases coming one after
another must be translated so that

the phrase left behind by one phrase forms the input of the
next, and
the amount of words consumed by whole phrase is the
same as the total consumed by subphrases.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Defining Grammars

The rule sentence -> noun_phrase, verb_phrase.
translates to:

sentence(S0,S):-
noun_phrase(S0,S1),
verb_phrase(S1,S).

The rule determiner -> [the] translates to

determiner([the|S],S).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Defining Grammars

Now, the user can input the grammar rules only:

sentence -> noun_phrase, verb_phrase.
verb_phrase -> verb.
verb_phrase -> verb, noun_phrase.
noun_phrase -> determiner, noun.
determiner -> [the].
noun -> [man].
noun -> [apple].
verb -> [eats].
verb -> [sings].

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

It will be automatically translated into:

sentence(S0,S) :-
noun_phrase(S0,S1),
verb_phrase(S1,S).

verb_phrase(S0,S):-
verb(S0,S).

verb_phrase(S0,S):-
verb(S0,S1),
noun_phrase(S1,S).

noun_phrase(S0,S):-
determiner(S0,S1),
noun(S1,S).

determiner([the|S],S).

noun([man|S],S).
noun([apple|S],S).

verb([eats|S],S).
verb([sings|S],S).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Goals

?-sentence([the,man,eats,the,apple],[]).
yes

?-sentence([the,man,eats,the,apple],X).
X=[]

SWI-Prolog provides an alternative (for the first goal only):

?-phrase(sentence,[the,man,eats,the,apple]).
yes

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Phrase Predicate

Definition of phrase is easy
phrase(Predicate,Argument):-

Goal=..[Predicate,Argument,[]],
call(Goal).

=.. (read “equiv") – built-in predicate

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

=..

?- p(a,b,c)=..X.
X = [p, a, b, c]

?- X=..p(a,b,c).
ERROR: =../2: Type error: ‘list’ expected,
found ‘p(a, b,c)’

?- X=..[p,a,b,c].
X=p(a,b,c).

?- X=..[].
ERROR: =../2: Domain error: ‘not_empty_list’
expected, found ‘[]’

?- X=..[1,a].
ERROR: =../2: Type error: ‘atom’ expected,
found ‘1’

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Is Not it Enough?

No, we want more.

Distinguish singular and plural sentences.

Ungrammatical:

The boys eats the apple
The boy eat the apple

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Straightforward Way

Add more grammar rules:

sentence -> singular_sentence.
sentence -> plural_sentence.
noun_phrase -> singular_noun_phrase.
noun_phrase -> plural_noun_phrase.
singular_sentence -> singular_noun_phrase,

singular_verb_phrase.
singular_noun_phrase -> singular_determiner,

singular_noun.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Straightforward Way

singular_verb_phrase -> singular_verb,
noun_phrase.

singular_verb_phrase -> singular_verb.
singular_determiner -> [the].
singular_noun -> [man].
singular_noun -> [apple].
singular_verb -> [eats].
singular_verb -> [sings].

And similar for plural phrases.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Disadvantages

Not elegant.
Obscures the fact that singular and plural sentences have
a lot of structure in common.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Better solution

Associate an extra argument to phrase types according to
whether it is singular or plural:

sentence(singular)
sentence(plural)

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Grammar Rules with Extra Arguments

sentence -> sentence(X).
sentence(X) -> noun_phrase(X),

verb_phrase(X).
noun_phrase(X) -> determiner(X),

noun(X).
verb_phrase(X) -> verb(X),

noun_phrase(Y).
verb_phrase(X) -> verb(X).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Grammar Rules with Extra Arguments. Cont.

determiner(_) -> [the].
noun(singular) -> [man].
noun(singular) -> [apple].
noun(plural) -> [men].
noun(plural) -> [apples].
verb(singular) -> [eats].
verb(singular) -> [sings].
verb(plural) -> [eat].
verb(plural) -> [sing].

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Parse Tree

The man eats the apple

generates

sentence(
noun_phrase(

determiner(the),
noun(man)),

verb_phrase(
verb(eats),
noun_phrase(

determiner(the),
noun(apple)),

)
)

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Building Parse Trees

We might want grammar rules to make a parse tree as well.
Rules need one more argument.
The argument should say how the parse tree for the whole
phrase can be constructed from the parse trees of its
sub-phrases.

Example:
sentence(X,sentence(NP,VP)) ->

noun_phrase(X,NP),verb_phrase(X,VP).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Translation

sentence(X,sentence(NP,VP)) ->
noun_phrase(X,NP),
verb_phrase(X,VP).

translates to

sentence(X,sentence(NP,VP),S0,S) :-
noun_phrase(X,NP,S0,S1),
verb_phrase(X,VP,S1,S).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Grammar Rules for Parse Trees

Number agreement arguments are left out for simplicity.

sentence(sentence(NP,VP)) ->
noun_phrase(NP),
verb_phrase(VP).

verb_phrase(verb_phrase(V)) ->
verb(V).

verb_phrase(verb_phrase(VP,NP)) ->
verb(VP),
noun_phrase(NP).

noun_phrase(noun_phrase(DT,N)) ->
determiner(DT),
noun(N).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Grammar Rules for Parse Trees. Cont.

determiner(determiner(the)) -> [the].
noun(noun(man)) -> [man].
noun(noun(apple)) -> [apple].
verb(verb(eats)) -> [eats].
verb(verb(sings)) -> [sings].

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Translation into Prolog Clauses

Translation of grammar rules with extra arguments—a
simple extension of translation of rules without arguments.
Create a predicate with two more arguments than are
mentioned in the grammar rules.
By convention, the extra arguments are as the last
arguments of the predicate.

sentence(X) -> noun_phrase(X), verb_phrase(X).

translates to

sentence(X,S0,S) :-
noun_phrase(X,S0,S1), verb_phrase(X,S1,S).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Adding Extra Rules

So far everything in the grammar rules were used in
processing the input sequence.
Every goal in the translated Prolog clauses has been
involved with consuming some amount of input.
Sometimes we may want to specify Prolog clauses that are
not of this type.
Grammar rule formalism allows this.
Convention: Any goals enclosed in curly brackets {} are left
unchanged by the translator.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Overhead in Introducing New Word

To add a new word banana, add at least one extra rule:
noun(singular, noun(banana)) -> [banana].

Translated into Prolog:
noun(singular, noun(banana), [banana|S],S).

Too much information to specify for one noun.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Mixing Grammar with Prolog

Put common information about all words in one place, and
information about particular words in somewhere else:

noun(S, noun(N)) -> [N],{is_noun(N,S)}.
is_noun(banana,singular).
is_noun(banana,plural).
is_noun(man,singular).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Mixing Grammar with Prolog

noun(S, noun(N)) -> [N],{is_noun(N,S)}.

{is_noun(N,S)} is a test (condition).
N must be in the is_noun collection with some plurality S.
Curly brackets indicate that it expresses a relation that has
nothing to do with the input sequence.
Translation does not affect expressions in the curly
brackets:
noun(S, noun(N),[N|Seq],Seq):-is_noun(N,S).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Mixing Grammar with Prolog

Another inconvenience:

is_noun(banana,singular).
is_noun(banana,plural).

Two clauses for each noun.

Can be avoided in most of the cases
by adding s for plural at the and of singular.

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Mixing Grammar with Prolog

Amended rule:
noun(plural, noun(RootN)) ->

[N],
{(name(N,Plname),
append(Singname,"s",Plname),
is_noun(RootN,singular))} .

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Further Extension

So far the rules defined things in terms how the input
sequence is consumed.
We might like to define things that insert items into the
input sequence.
Example: Analyze

“Eat your supper"
as if there were an extra word “you" inserted:

“You eat your supper"

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Rule for the Extension

sentence –> imperative,
noun_phrase,
verb_phrase.

imperative, [you] –> [].
imperative –> [].

The first rule of imperative translate to:

imperative(L,[you|L]).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Meaning of the Extension

If
the left hand side of a grammar rule consists of a part of
the input sequence separated from a list of words by
comma

Then
in the parsing, the words are inserted into the input
sequence after the goals on the right-hand side have had
their chances to consume words from it.

Temur Kutsia Logic Programming


	The Parsing Problem
	Representing the Parsing Problem in Prolog
	The Grammar Rule Notation
	Adding Extra Arguments
	Adding Extra Tests

