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Grammar of a Language

Definition (Grammar of a Language)

A set of rules for specifying what sequences of words are
acceptable as sentences of the language.

Grammar specifies:
How the words must group together to form phrases.
What orderings of those phrases are allowed.
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Parsing Problem

Given: A grammar for a language and a sequence of
words.

Problem: Is the sequence an acceptable sentence of the
language?
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Simple Grammar Rules for English

Structure Rules:

sentence -> noun_phrase, verb_phrase.

noun_phrase -> determiner, noun.

verb_phrase -> verb, noun_phrase.

verb_phrase -> verb.
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Simple Grammar Rules for English (Ctd.)

Valid Terms:

determiner -> [the].

noun -> [man].

noun -> [apple].

verb -> [eats].

verb -> [sings].
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Reading Grammar Rules

X->Y: "X can take the form Y".
X,Y: "X followed by Y".

Example
sentence -> noun_phrase, verb_phrase:

sentence can take a form: noun_phrase followed by
verb_phrase.
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Alternatives

Two rules for verb_phrase:

1 verb_phrase -> verb, noun_phrase.

2 verb_phrase -> verb.

Two possible forms:
1 verb_phrase can contain a noun_phrase: "the man

eats the apple", or
2 it need not: "the man sings"
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Valid Terms

Specify phrases made up in terms of actual words (not in terms
of smaller phrases):

determiner -> [the]:
A determiner can take the form: the word the.
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Parsing

sentence -> noun_phrase, verb_phrase

sentence

noun_phrase

The man

verb_phrase

eats the apple
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Parsing

noun_phrase -> determiner, noun

noun_phrase

determiner

the

noun

man
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How To

Problem: How to test whether a sequence is an acceptable
sentence?

Solution: Apply the first rule to ask:

Does the sequence decompose into two phrases:
acceptable noun_phrase and
acceptable verb_phrase?
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How To

Problem: How to test whether the first phrase is an
acceptable noun_phrase?

Solution: Apply the second rule to ask:

Does it decompose into a
determiner followed by a noun?

And so on.
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Parse Tree

sentence

noun_phrase

determiner

the

noun

man

verb_phrase

verb

eats

noun_phrase

determiner

the

noun

apple
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Parsing Problem

Given: A grammar and a sentence.
Construct: A parse tree for the sentence.
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Prolog Parse

Problem: Parse a sequence of words.
Output: True, if this sequence is a valid sentence.

False, otherwise.

Example (Representation)
Words as PROLOG atoms and sequences of words as lists:

[the,man,eats,the,apple]
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Sentence

Introducing predicates:

sentence(X) : X is a sequence of words
forming a grammatical sentence.

noun_phrase(X) : X is a noun phrase.
verb_phrase(X) : X is a verb phrase.
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Program

sentence(X) :-
append(Y,Z,X),
noun_phrase(Y),
verb_phrase(Z).

verb_phrase(X) :-
append(Y,Z,X),
verb(Y),
noun_phrase(Z).

verb_phrase(X) :-
verb(X).

noun_phrase(X) :-
append(Y,Z,X),
determiner(Y),
noun(Z).

determiner([the]).

noun([apple]).
noun([man]).

verb([eats]).
verb([sings]).
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Inefficient

A lot of extra work.
Unnecessary Searching.
Generate and Test:

Generate a sequence.
Test to see if it matches.

Simplest Formulation of the search but inefficient
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Inefficiency

The program accepts the sentence "the man eats the apple":

?-sentence([the,man,eats,the,apple]).

yes

The goal
?-append(Y,Z,[the,man,eats,the,apple])

on backtracking can generate all possible pairs:

Y=[], Z=[the,man,eats,the,apple]
Y=[the], Z=[man,eats,the,apple]
Y=[the,man], Z=[eats,the,apple]
Y=[the,man,eats], Z=[the,apple]
Y=[the,man,eats,the], Z=[apple]
Y=[the,man,eats,the,apple], Z=[]

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Redefinition

noun_phrase(X,Y) : there is a noun phrase
at the beginning
of the sequence X
and the part that is left
after the noun phrase
is Y.

The goal

?-noun_phrase([the,man,saw,the,cat],
[saw,the,cat]).

should succeed.

noun_phrase(X,Y):- determiner(X,Z),noun(Z,Y).
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Improved Program

sentence(S0,S) :-
noun_phrase(S0,S1),
verb_phrase(S1,S).

verb_phrase(S0,S):-
verb(S0,S).

verb_phrase(S0,S):-
verb(S0,S1),
noun_phrase(S1,S).

noun_phrase(S0,S):-
determiner(S0,S1),
noun(S1,S).

determiner([the|S],S).

noun([man|S],S).
noun([apple|S],S).

verb([eats|S],S).
verb([sings|S],S).
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Goal

sentence(S0,S) : There is a sentence
at the beginning of S0
and
what remains from the sentence in S0
is S.

We want whole S0 to be a sentence, i.e., S should be empty.

?-sentence([the,man,eats,the,apple]),[]).

Do you remember difference lists?
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Pros and Cons

Advantage: More efficient.
Disadvantage: More cumbersome.
Improvement idea: Keep the easy grammar rule notation for

the user,
Automatically translate into the PROLOG code for
computation.
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Defining Grammars

PROLOG provides an automatic translation facility for grammars.

Principles of translation:
Every name of a kind of phrase must be translated into a
binary predicate.
First argument of the predicate—the sequence provided.
Second argument—the sequence left behind.
Grammar rules mentioning phrases coming one after
another must be translated so that

the phrase left behind by one phrase forms the input of the
next, and
the amount of words consumed by whole phrase is the
same as the total consumed by subphrases.
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Defining Grammars

The rule sentence -> noun_phrase, verb_phrase.
translates to:

sentence(S0,S):-
noun_phrase(S0,S1),
verb_phrase(S1,S).

The rule determiner -> [the] translates to

determiner([the|S],S).
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Defining Grammars

Now, the user can input the grammar rules only:

sentence -> noun_phrase, verb_phrase.
verb_phrase -> verb.
verb_phrase -> verb, noun_phrase.
noun_phrase -> determiner, noun.
determiner -> [the].
noun -> [man].
noun -> [apple].
verb -> [eats].
verb -> [sings].
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It will be automatically translated into:

sentence(S0,S) :-
noun_phrase(S0,S1),
verb_phrase(S1,S).

verb_phrase(S0,S):-
verb(S0,S).

verb_phrase(S0,S):-
verb(S0,S1),
noun_phrase(S1,S).

noun_phrase(S0,S):-
determiner(S0,S1),
noun(S1,S).

determiner([the|S],S).

noun([man|S],S).
noun([apple|S],S).

verb([eats|S],S).
verb([sings|S],S).

Temur Kutsia Logic Programming



The Parsing Problem
Representing the Parsing Problem in Prolog

The Grammar Rule Notation
Adding Extra Arguments

Adding Extra Tests

Goals

?-sentence([the,man,eats,the,apple],[]).
yes

?-sentence([the,man,eats,the,apple],X).
X=[]

SWI-Prolog provides an alternative (for the first goal only):

?-phrase(sentence,[the,man,eats,the,apple]).
yes
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Phrase Predicate

Definition of phrase is easy
phrase(Predicate,Argument):-

Goal=..[Predicate,Argument,[]],
call(Goal).

=.. (read “equiv") – built-in predicate
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=..

?- p(a,b,c)=..X.
X = [p, a, b, c]

?- X=..p(a,b,c).
ERROR: =../2: Type error: ‘list’ expected,
found ‘p(a, b,c)’

?- X=..[p,a,b,c].
X=p(a,b,c).

?- X=..[].
ERROR: =../2: Domain error: ‘not_empty_list’
expected, found ‘[]’

?- X=..[1,a].
ERROR: =../2: Type error: ‘atom’ expected,
found ‘1’
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Is Not it Enough?

No, we want more.

Distinguish singular and plural sentences.

Ungrammatical:

The boys eats the apple
The boy eat the apple
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Straightforward Way

Add more grammar rules:

sentence -> singular_sentence.
sentence -> plural_sentence.
noun_phrase -> singular_noun_phrase.
noun_phrase -> plural_noun_phrase.
singular_sentence -> singular_noun_phrase,

singular_verb_phrase.
singular_noun_phrase -> singular_determiner,

singular_noun.
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Straightforward Way

singular_verb_phrase -> singular_verb,
noun_phrase.

singular_verb_phrase -> singular_verb.
singular_determiner -> [the].
singular_noun -> [man].
singular_noun -> [apple].
singular_verb -> [eats].
singular_verb -> [sings].

And similar for plural phrases.
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Disadvantages

Not elegant.
Obscures the fact that singular and plural sentences have
a lot of structure in common.
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Better solution

Associate an extra argument to phrase types according to
whether it is singular or plural:

sentence(singular)
sentence(plural)
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Grammar Rules with Extra Arguments

sentence -> sentence(X).
sentence(X) -> noun_phrase(X),

verb_phrase(X).
noun_phrase(X) -> determiner(X),

noun(X).
verb_phrase(X) -> verb(X),

noun_phrase(Y).
verb_phrase(X) -> verb(X).
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Grammar Rules with Extra Arguments. Cont.

determiner(_) -> [the].
noun(singular) -> [man].
noun(singular) -> [apple].
noun(plural) -> [men].
noun(plural) -> [apples].
verb(singular) -> [eats].
verb(singular) -> [sings].
verb(plural) -> [eat].
verb(plural) -> [sing].
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Parse Tree

The man eats the apple

generates

sentence(
noun_phrase(

determiner(the),
noun(man)),

verb_phrase(
verb(eats),
noun_phrase(

determiner(the),
noun(apple)),

)
)
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Building Parse Trees

We might want grammar rules to make a parse tree as well.
Rules need one more argument.
The argument should say how the parse tree for the whole
phrase can be constructed from the parse trees of its
sub-phrases.

Example:
sentence(X,sentence(NP,VP)) ->

noun_phrase(X,NP),verb_phrase(X,VP).
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Translation

sentence(X,sentence(NP,VP)) ->
noun_phrase(X,NP),
verb_phrase(X,VP).

translates to

sentence(X,sentence(NP,VP),S0,S) :-
noun_phrase(X,NP,S0,S1),
verb_phrase(X,VP,S1,S).
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Grammar Rules for Parse Trees

Number agreement arguments are left out for simplicity.

sentence(sentence(NP,VP)) ->
noun_phrase(NP),
verb_phrase(VP).

verb_phrase(verb_phrase(V)) ->
verb(V).

verb_phrase(verb_phrase(VP,NP)) ->
verb(VP),
noun_phrase(NP).

noun_phrase(noun_phrase(DT,N)) ->
determiner(DT),
noun(N).
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Grammar Rules for Parse Trees. Cont.

determiner(determiner(the)) -> [the].
noun(noun(man)) -> [man].
noun(noun(apple)) -> [apple].
verb(verb(eats)) -> [eats].
verb(verb(sings)) -> [sings].
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Translation into Prolog Clauses

Translation of grammar rules with extra arguments—a
simple extension of translation of rules without arguments.
Create a predicate with two more arguments than are
mentioned in the grammar rules.
By convention, the extra arguments are as the last
arguments of the predicate.

sentence(X) -> noun_phrase(X), verb_phrase(X).

translates to

sentence(X,S0,S) :-
noun_phrase(X,S0,S1), verb_phrase(X,S1,S).
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Adding Extra Rules

So far everything in the grammar rules were used in
processing the input sequence.
Every goal in the translated Prolog clauses has been
involved with consuming some amount of input.
Sometimes we may want to specify Prolog clauses that are
not of this type.
Grammar rule formalism allows this.
Convention: Any goals enclosed in curly brackets {} are left
unchanged by the translator.
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Overhead in Introducing New Word

To add a new word banana, add at least one extra rule:
noun(singular, noun(banana)) -> [banana].

Translated into Prolog:
noun(singular, noun(banana), [banana|S],S).

Too much information to specify for one noun.
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Mixing Grammar with Prolog

Put common information about all words in one place, and
information about particular words in somewhere else:

noun(S, noun(N)) -> [N],{is_noun(N,S)}.
is_noun(banana,singular).
is_noun(banana,plural).
is_noun(man,singular).
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Mixing Grammar with Prolog

noun(S, noun(N)) -> [N],{is_noun(N,S)}.

{is_noun(N,S)} is a test (condition).
N must be in the is_noun collection with some plurality S.
Curly brackets indicate that it expresses a relation that has
nothing to do with the input sequence.
Translation does not affect expressions in the curly
brackets:
noun(S, noun(N),[N|Seq],Seq):-is_noun(N,S).
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Mixing Grammar with Prolog

Another inconvenience:

is_noun(banana,singular).
is_noun(banana,plural).

Two clauses for each noun.

Can be avoided in most of the cases
by adding s for plural at the and of singular.
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Mixing Grammar with Prolog

Amended rule:
noun(plural, noun(RootN)) ->

[N],
{(name(N,Plname),
append(Singname,"s",Plname),
is_noun(RootN,singular))} .
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Further Extension

So far the rules defined things in terms how the input
sequence is consumed.
We might like to define things that insert items into the
input sequence.
Example: Analyze

“Eat your supper"
as if there were an extra word “you" inserted:

“You eat your supper"
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Rule for the Extension

sentence –> imperative,
noun_phrase,
verb_phrase.

imperative, [you] –> [].
imperative –> [].

The first rule of imperative translate to:

imperative(L,[you|L]).
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Meaning of the Extension

If
the left hand side of a grammar rule consists of a part of
the input sequence separated from a list of words by
comma

Then
in the parsing, the words are inserted into the input
sequence after the goals on the right-hand side have had
their chances to consume words from it.
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