
Logic Programming
Efficiency Issues

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Temur Kutsia Logic Programming

Efficiency Issues in Prolog

Narrow the Search

Let Unification do the Work

Avoid assert and retract

Understand Tokenization

Avoid String Processing

Recognize Tail Recursion

Let Indexing Help

Use Accumulators

Use Difference Lists

Temur Kutsia Logic Programming

Narrow the Search

Efficient programs must search efficiently.

Example

Knowledge base contains 1000 grey objects and 10 horses.

?- horse(X), grey(X).

is 100 times as fast as

?- grey(X), horse(X).

Narrow the search space as early as possible.

Temur Kutsia Logic Programming

Narrow the Search

Example

Determine whether two lists are equal as sets.

Bad solution:
set_equal(L1,L2) :- permute(L1,L2).

N element list has N! permutations.

Testing set-equality of 20-element list can require 2.4× 1018

comparisons.

Better solution:
set_equal(L1,L2) :- sort(L1,L3), sort(L2,L3).

N-element list can be sorted in N log N steps. Faster that the
first solution by a factor of more that 1016.

Temur Kutsia Logic Programming

Let Unification do the Work

Example

Write a predicate that accepts a list and succeeds if the list has
three elements.

Bad solution:
had_three_elements(L):-length(L,N),N=3.

Slightly better solution:
had_three_elements(L):-length(L,3).

Good solution:
had_three_elements([_,_,_]).

Temur Kutsia Logic Programming

Let Unification do the Work

Example

Write a predicate that accepts a list and generates from it a
similar list with the first two elements swapped.

Good solution:
swap_first_two([A,B|Rest],[B,A|Rest]).

The data structures [A,B|Rest] and [B,A|Rest] , or
templates for them, are created when the program is compiled,
and unification gives values to the variables at run time.

Temur Kutsia Logic Programming

Avoid assert and retract

Reasons:

assert and retract are relatively slow and they lead to
a messy logic.

In most implementation the dynamic predicates can not
run in a full compiled speed.

The effect of assert and retract can not be undone by
backtracking.

Programs get hard to debug.

Temur Kutsia Logic Programming

Avoid assert and retract

Legitimate Uses:

To record new knowledge in the knowledge base.

To store the intermediate results of a computation that
must backtrack past the point at which it gets its result.
(Think about using setof or bagof instead. It might be
faster.)

Temur Kutsia Logic Programming

Understand Tokenization

Fundamental unit: Term (numbers, atoms, structures).

Numbers are stored in fixed-point or floating-point binary.

Atoms are stored in a symbol table in which each atom
occurs only once.

Atoms in the program are replaced by their addresses in
the symbol table (tokenization).

Temur Kutsia Logic Programming

Understand Tokenization

Because of tokenization the structure
f(‘What a long atom this seems to be’,

‘What a long atom this seems to be’,
‘What a long atom this seems to be’)

is more compact than
g(aaaaa,bbbbb,ccccc).

To compare two atoms, even long ones, the computer
needs only compare their addresses.

By contrast, comparing lists or structures requires every
element to be examined individually.

Temur Kutsia Logic Programming

Avoid String Processing

Strings:

Lists of numbers representing ASCII codes of characters.

abc – an atom.

"abc" – a list [97, 98, 99] .

Strings are designed to be easily taken apart.

Their only proper use is in situations where access to the
individual characters is essential.

Temur Kutsia Logic Programming

Recognize Tail Recursion

Recursion:

Can be inefficient.

Each procedure call requires information to be saved so
that control can return to the calling procedure.

If a clause calls itself 1000 times, there will be 1000 copies
of its stack frame in memory.

Exception:

Tail Recursion.

Control need not return to the calling procedure because
there is nothing more for it to do.

Temur Kutsia Logic Programming

Recognize Tail Recursion

Tail recursion exists when:

The recursive call is the last subgoal in the clause, and

There are no untried alternative clauses, and

There are no untried alternatives for any subgoal
preceding the recursive call in the same clause.

Temur Kutsia Logic Programming

Recognize Tail Recursion

Example

This predicate is tail recursive.

test1 :- write(hello), nl, test1.

Example

This predicate is not tail recursive because the recursive call is
not last.

test2 :- test2, write(hello), nl.

Temur Kutsia Logic Programming

Recognize Tail Recursion

Example

This predicate is not tail recursive because it has an untried
alternative.

test3 : - write(hello), nl, test3.

test3 : - write(goodbye).

Temur Kutsia Logic Programming

Recognize Tail Recursion

Example

This predicate is not tail recursive because a subgoal has an
untried alternative.

test4 : - g, write(hello), nl, test4.

g : - write(starting).

g : - write(beginning).

Temur Kutsia Logic Programming

Let Indexing Help

To match the query

?- f(a,b).

PROLOG does not look at all the clauses in the knowledge base.

It looks only the clauses for f .

Indexing.

Temur Kutsia Logic Programming

Let Indexing Help

Implementation dependent.

Many implementations index not only the predicate symbol
but also the main functor of the first argument

First-argument indexing.

For ?- f(a,b).
The search considers only clauses that match f(a,...)
and neglects clauses such as f(b,c) .

Temur Kutsia Logic Programming

Let Indexing Help

Consequences of (first-argument) indexing.
Argument order:

The first argument should be the one most likely to be
known at search time, and

Preferably the most diverse.

Better to have
f(a,x).
f(b,x).
f(c,x).
than
f(x,a).
f(x,b).
f(x,c).

Temur Kutsia Logic Programming

Let Indexing Help

Consequences of (first-argument) indexing.

Indexing can make a predicate tail recursive when it otherwise
would not be.

Example
p(f(A,B)) :- p(A).
p(a).

is tail-recursive because indexing eliminates p(a) from
consideration.

Temur Kutsia Logic Programming

