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Chapter 0

Preliminaries

0.1 Vector Spaces

Unless stated otherwise, we assume that all vector spaces (including algebras) are finite-
dimensional over the ground field R. Rings and algebras are understood to be unital
(meaning they have a distinguished multiplicative identity element). The null space O =
{0} is regarded as a subspace of dimension 0 within any space Rn, which means 0 has to
be understood as the corresponding null tuple (0, . . . , 0) ∈ Rn. Following [228], we will also
use the subspace convention of regarding Rn ⊆ Rn+s in the sense of Rn × O ⊆ Rn ×Rs.
Furthermore, we set V × = V \O for any vector space V .

Initially, one can think of Rn as an affine space (hence also having a natural topology),
and this is all that we needed up to now when speaking about maps between open sets of
affine spaces. When it comes to derivatives, however, we need n-dimensional vector spaces.
As an example, look at the first formula of Subsection 1.1.1. Strictly speaking, the point x
there comes from the affine space Rn while the vector h comes from its translation space.
In order to avoid an overkill in notation, we view Rn both as an affine and a vector space
(of columns), but we will usually use x, y, z when thinking of points in the affine space Rn.

Sometimes—particularly in connection with co- and contravariant tensors—it is conve-
nient to regard a vector space V together with its dual V ∗ on an equal footing, as achieved
by following terminology. A bilinear map 〈|〉 : V̄ × V → K on two K-vector spaces V̄
and V is called a dual pairing if it is non-degenerate in both arguments [37239], meaning
〈v̄| 〉 : V → K and 〈 |v〉 : V̄ → K are injective (and hence bijective) for all v̄ ∈ V̄ and
v ∈ V . One says that V̄ and V are dually paired by 〈|〉, and (V̄ , 〈|〉, V ) is a dual pair of
vector spaces. For the sake of naming, we call V̄ the dual space and V the primal space of
the pair; see the next paragraph for a motivation of this naming convention.

If (W̄ , 〈|〉,W ) is another dual pair (overloading the notation for the pairing), a morphism
of dual pairs is given by two maps T̄ : W̄ → V̄ and T : V → W with the conservation
property 〈T̄ w̄|v〉 = 〈w̄|Tv〉 for all w̄ ∈ W̄ and v ∈ V . It is easily verified that the dual pairs
form a category under this notion of morphism. It is then also clear what we understand
by an isomorphism of dual pairs. For an isomorphism (T̄ , T ), one may also write S = T̄−1

4



CHAPTER 0. PRELIMINARIES 5

such that the conservation property gets the more symmetric form 〈v̄|v〉 = 〈Sv̄|Tv〉 for all
v̄ ∈ V̄ and v ∈ V .

Given a vector space V , one can construct the induced dual pair PV = (V ∗, 〈|〉, V ),
where the canonical pairing is defined by 〈v∗|v〉 = v∗(v) for all v∗ ∈ V ∗ and v ∈ V . Dually,
one may also construct the dual pair P ∗

V , where the roles of V and V ∗ are exchanged and
the dual pairing has its arguments reversed. Note the PV and P ∗

V are anti-isomorphic to
each other. Unless mentioned otherwise, we always use the construction PV = (V ∗, V )
rather than P ∗

V = (V, V ∗), omitting reference to the pairing 〈|〉. (The covariant functor
V 7→ PV is an isomorphisms of categories, the contravariant functor V 7→ P ∗

V a duality of
categories; hence PV 7→ P ∗

V is a duality on the category of dual pairs.)
We write Rn for the vector space of rows (1× n matrices) and Rn for the vector space

of columns (n × 1 matrices). Rows are also known as (linear) forms, and we often use
the letters a, b for them; columns are sometimes addressed as vectors in the narrower sense
(coming from the “primal space” rather than its dual), and we use h, k for them. Since both
of these matrices act naturally to the left as well as to the right, we identify the actions with
the corresponding matrices. Thus a row is seen as maps R→ Rn and Rn → R, a column
as maps R→ Rn and Rn → R. We observe that (Rn, (|),Rn) form a dual pair under the
canonical scalar product (|) : Rn × Rn → R given by the matrix product (a|h) = a · h.
Furthermore, choosing a dual basis pair in a dual pair of vector spaces corresponds to an
isomorphism between this dual pair and (Rn, (|),Rn).

Following [37268], we call (β∗, β∗) a dual basis pair for (V, 〈|〉,W ) if β∗ = (β1, . . . , βn)
is a basis for V and β∗ = (β1, . . . , βn) a basis for W such that 〈βi|βj〉 = δij for all i, j ∈
{1, . . . , n}. Here and elsewhere in these lecture notes we use δij for the Kronecker symbol
and the following convention of placing the indices: The basis vectors from the “primal”
space V are indexed above, the ones from the “dual” space W below; for the corresponding
components v = viβ

i ∈ V and w = wiβi ∈ W , it is the other way round—such that we
can employ the Einstein summation convention—summation over diagonal index pairs is
implicit. If we consider a vector space V as a dual pair PV , we can identify the bases β∗ of
V with the dual basis pairs (β∗, β∗) of PV .

Writing δ1, . . . , δn for the canonical basis in Rn and δ1, . . . , δn for the one in Rn, we
obtain a dual basis pair for (Rn, (|),Rn). With respect to this canonical dual basis pair, the
scalar product of a = aiδ

i ∈ Rn and h = hiδi ∈ Rn takes on the familiar form (a|h) = aih
i.

In the affine space Rn, the basis columns appear as coordinate axes δk : R → Rn, t 7→
(0, . . . , t, . . . , 0) and the basis rows as coordinate projections δk : Rn → R, (x1, . . . , xn) 7→
xk. Note that we can also view δk(t) = δkt and δk(x) = δkx as matrix products. A
dual basis pair (β∗, β∗) in a dual pair of vector spaces (V, 〈|〉,W ) allows to extract the
components with respect to the corresponding basis, so vi = 〈v|βi〉 and wi = 〈βi|w〉. We
collect these components into rows and columns, respectively, writing (v|β = viδ

i ∈ Rn

and |w)β = wiδi ∈ Rn.
The set of all m × n matrices is denoted by Rm

n , so a matrix A ∈ Rm
n has m rows

and n columns. We write Aij for its (i, j)-th element, with the row index i ranging over
{1, . . . , m} and the column index j ranging over {1, . . . , n}. Now a linear map F between an
m-dimensional vector space V and an n-dimensional vector space W first has a coordinate
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representation Fγβ : Rm → Rn, with respect to chosen bases β in V and γ in W . But
the linear map Fγβ can in turn be described by matrices, most canonically by the left
representation matrix L ∈ Rn

m operating as h 7→ Lh and by the right representation
matrix R ∈ Rm

n operating as a 7→ aR. The matrix L has as columns F (β1), . . . , F (βn)
expanded with respect to γ1, . . . , γn; the matrix R has as rows F (γ1), . . . , F (γn) expanded
with respect to β1, . . . , βn. (The transformation F 7→ Fβα is a functor from the category of
vector spaces to its skeleton. The representation matrices L and R correspond to functors
respectively from the skeleton and its opposite to the category of matrices.)

As an example, consider C as a two-dimensional real vector space V with the linear map
F : V → V given by z 7→ iz. Obviously F is a counterclockwise rotation by a right angle,
whose coordinate representation is the map Fββ : R2 → R2 given by (x, y) 7→ (−y, x), with
respect to the canonical basis β = (1, i). Its left and right matrix representations are

(
x
y

)

7→

(
0 −1
1 0

) (
x
y

)

and
(
x y

)
7→

(
x y

)
(

0 1
−1 0

)

,

respectively. As one can see from this example, the left and right representation matrices
are related to each other by transposition.

Since we shall normally work with dual pairs of vector spaces, we will adhere to the
following convention for representation matrices: A coordinate representation is identified
with its representation matrix—the left one operating on columns, the right one on rows.
So if F : V →W is a linear map, we have |Fv)γ = Fγβ |v)β for all v ∈ V , where β is a basis
for V and γ a basis for W .

The dual of a linear map F : V →W is given by the pullback F ∗ : W ∗ → V ∗, defined by
a 7→ a◦F . The matrix representation of F ∗ is reverse to that of F . In other words, if F had
A ∈ Rm

n as its left representation matrix and hence A⊤ ∈ Rm
n as its right representation

matrix, its dual F ∗ has A as its right representation matrix and A⊤ as its left representation
matrix (using in V ∗ and W ∗ the dual bases of the ones respectively used in V and W ). As
above we have now (F ∗d|β = (d|γFγβ for all d ∈ V ∗, where β is again a basis for V and γ
a basis for W .

0.2 Change of Bases

Changing from a basis β = (β1, . . . , βn) of a vector space V to a new basis β̄ = (β̄1, . . . , β̄n)
can be expressed by the transition matrix T ∈ Rn

n from β to β̄, formed by writing in
columns the old basis vectors with respect to the new basis such that

βj = β̄iT
i
j . (1)

This means T = 1β̄β is the (left) representation matrix of 1V with respect to the bases β
and β̄.

A vector v ∈ V may be expanded as v = viβi in the old basis and as v = v̄iβ̄i in the
new basis. Hence we obtain

v̄i = T ijv
j or |v)β̄ = T |v)β (2)



CHAPTER 0. PRELIMINARIES 7

for the corresponding component transformation. Note that the matrix expressing β̄ in
terms of β is contragredient (i.e. inverse transpose) to the one expressing |v)β̄ ∈ Rn in
terms of |v)β ∈ Rn, the inverse coming from exchanging left/right sides of the equation
and the transpose from exchanging row/column indices of the summation.

Now consider V as part of the dual pair (V ∗, V ). Then the above bases in V are
written as β∗ = (β1, . . . , βn) and β̄∗ = (β̄1, . . . , β̄n), and they come along with their dual
bases β∗ = (β1, . . . , βn) and β̄∗ = (β̄1, . . . , β̄n) in V ∗. Since the component transformation
law v̄i = T ijv

j holds for all v ∈ V and since vi = βi(v) and v̄i = β̄i(v), we obtain

β̄i = T ijβ
j, (3)

so the transition matrix from β∗ to β̄∗ in V ∗ is also contragredient to T . In analogy to
before, this yields the component transformation law

dj = d̄iT
i
j or (d|β = (d|β̄ T (4)

for linear forms d ∈ V ∗, whose matrix is this time just T itself.
The set Bas(V ) of bases of a vector space V form a so-called torsor. Since the theory of

torsors—despite its simplicity—is not usually treated in standard texts of linear algebra,
let us give a brief sketch of it at this point. A torsor over a group G, briefly called a
G-torsor, is a free and transitive action G×X → X. We may regard it as an isomorphic
view of G that does not have a distinguished neutral element (“a group that has forgotten
which was its neutral element”). Consequently, one cannot “multiply” the elements of X,
but one may “divide” them: For every x, y ∈ X there is a unique g =: x/y such that
x = g · y.

If X and Y are both torsors over the same group G, a map h : X → Y is called
equivariant if h(g ·x) = g ·h(x) for all g ∈ G and x ∈ X. If one endows the G-actions with
this notion of morphism, they form a category with the G-torsors being a full subcategory.
Note also that we have only considered left actions so far, but everything can be extended
to right actions as well: If both G and H act on the right, the condition for h to be
equivariant is h(x · g) = h(x) · g. If G acts on the right but H on the left, one must require
h(x · g) = g−1 · h(x); and if G acts on the left but H on the right, we have accordingly
h(g · x) = h(x) · g−1.

Given a G1-torsor X1 and a G2-torsor X2, we can form the torsor product : We regard
X1 ×X2 as a torsor over G1 ×G2 via the natural action (g1, g2) · (x1, x1) = (g1 · x1, g2 · x2).
The division is now given by (x1, x2)/(y1, y2) = (x1/y1, x2/y2).

Coming back to the bases of an n-dimensional vector space V , we see that Bas(V ) is a
torsor over GLn(R). The action of a transition matrix T ∈ GLn(R) on a basis β ∈ Bas(V )
is given by T ·β = β̄, where β̄ ∈ Bas(V ) is defined as in (1). In other words, the transition
matrix from β to β̄ is the quotient β̄/β.

Every vector v ∈ V induces a map |v) : Bas(V ) → Rn that associates to a given basis
β its components |v)β with respect to β. The transformation law (2) can be written as

|v)T ·β = T · |v)β (5)
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if we introduce the usual action of GLn(R) on the component array Rn as a matrix product
(matrix times column). This means that |v) is an equivariant map between the GLn(R)-
torsors Bas(V ) and Rn.

One may also turn things upside-down and introduce n-dimensional vectors as equiv-
ariant maps. More precisely, choose an arbitrary torsor B over GLn(R), to be viewed as
“abstract bases” or “basis labels”. Then a contravariant component vector is defined as an
equivariant map v : B → Rn. Transferring the linear structure from the tensor array Rn,
it is easy to see that the collection V of all component maps forms a vector space, which
we might call the contravariant component space. Fixing any β ∈ B, it is clear from (5)
that each component vector v ∈ V is determined by its value v(β) ∈ Rn; conversely, each
column h ∈ Rn corresponds to the unique component vector v defined by v(β) = h. Thus
every β ∈ B induces a bijection v 7→ v(β) between V and Rn, which is in fact a linear
isomorphism V ∼= Rn. This implies in particular that dimV = n.

Note also that every basis (b1, . . . , bn) of V corresponds to a unique “abstract basis”
β ∈ B in the following way: Choosing an arbitrary β̄ ∈ B, we obtain a basis (b1 β̄, . . . , bn β̄)
of Rn. Letting T be the transition matrix from the canonical basis (δ1, . . . , δn) to the basis
(b1 β̄, . . . , bn β̄) and setting β = T · β̄, we obtain b1(β) = δ1, . . . , bn(β) = δn. Identifying the
concrete and abstract bases of V in this manner, we see that vector spaces and component
spaces are in bijective correspondence with each other.

It becomes more interesting when we consider dual spaces. Just as Rn is a left torsor
over GLn(R), its dual Rn is a right torsor over GLn(R). Every linear form d ∈ V ∗ now
induces a map (d| : Bas(V ) → Rn that assigns to d the row vector (d|β of components
with respect to the unique V ∗-basis dual to the V -basis β. The corresponding component
transformation law (4) again says that (d| is equivariant, this time meaning

(d|T ·β = (d|β · T
−1 (6)

for all T ∈ GLn(R) and β ∈ Bas(V ).
If we view (V ∗, V ) as a dual pair of vector spaces with Bas(V ) consisting of dual basis

pairs (β∗, β∗), a vector v ∈ V induces an equivariant map |v) : Bas(V ) → Rn and a linear
form d ∈ V ∗ an equivariant map (d| : Bas(V ) → Rn as explained above. This can be done
abstractly: If B is an arbitrary GLn(R)-torsor, a contravariant component vector is again
an equivariant map from B to Rn while a covariant component vector is an equivariant
map from B to Rn. As before, one may build the vector spaces V and V̄ of contra- and
covariant component vectors, respectively. Moreover, one can now introduce the bilinear
form 〈|〉 : V̄ ×V → R by setting 〈d|v〉 = (a|h) where a = (d|β and h = |v)β for an arbitrary
“abstract dual basis pair” β ∈ B; note that 〈|〉 is well-defined due to the transformation
laws (5) and (6). Thus we obtain a dual pair of vector spaces (V̄ , (|), V ), whose dual
basis pairs can again be identified with the “abstract dual basis pairs” in B. Under this
identification, we obtain a bijective correspondence between dual pairs of vector spaces
and co-/contravariant component spaces.

A final remark on co- and contravariance (to be investigated in a more general context
in Chapter 2). For a single vector space, it does not make sense to speak of co- and
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contravariance, meaning to distinguish linear forms from vectors: Every vector space (recall
that we always assume finite dimension!) is the dual of another space—namely of its
dual space. Accordingly, an equivariant map from a set of “abstract bases” B to any n-
dimensional vector space C (be it Rn or Rn) is as good as any other—no matter whether
we consider left or right actions on C: Writing “linear forms” as rows and “vectors” as
columns is just an arbitrary (though useful) convention. The same is true about the action
on B: We may write it on either side, depending on how we define the notion of transition
matrix.

The crucial point in distinguishing co- from contravariance is to have a dual pairing
between two vector spaces V and V̄ . Looking back at its definition, we see that it is not
essential from which side GLn(R) acts on either B or C. But it is important that both
the covariant and the contravariant maps are defined on the same torsor B with a fixed
(left or right) action of GLn(R) and that its actions on Rn and Rn are from opposite
sides (such that they cancel out). In such a case only, we may refer to V as the “primal
space” (holding the “vectors” with their “contravariant components”) and to V̄ as the
“dual space” (holding the “linear forms” with their “covariant components”).

0.3 Maps in Topological Spaces

Let X and Y be sets. Then we call Φ ⊆ X × Y a graph from X to Y if for every x ∈ X
there is a unique y ∈ Y such that (x, y) ∈ Φ. A map from X to Y is a triple F = (X, Y,Φ)
such that Φ is a graph from X to Y ; we write this as F : X → Y , calling X the domain
and Y the codomain of F . (If one does care for symmetry, one may as well drop X from
the triple F ; it can be obtained from Φ by collecting its left components.)

For reasons of clarity, we emphasize two points in the above definition: First, a map
F : X → Y is not simply its graph; it “knows” its codomain (and of course also its domain).
We write domF and codF for the domain and codomain of F , respectively. For example,
if X ⊆ Y , the inclusion ι : X → Y is to be distinguished from the identity 1X : X → X;
the graphs are in both cases X ×X, but we have cod ι = Y whereas cod 1X = X. Second,
we must be careful not to confuse the codomain Y of a map F : X → Y with its image
F (X); they coincide iff F is surjective.

If X and Y are topological spaces, a map F : X → Y is called open/continuous if the
image/preimage of any open set in Y is open in Y . A bijection F that is both open and
continuous is called a homeomorphism; this is equivalent to requiring that F and F−1 are
both continuous (or both open). If U ⊆ X and V ⊆ Y , we call a map f : U → V a C0

homeomorphism if U is open in X and V open in Y and if F is a homeomorphism between
the topological spaces U und V , considered with their induced topology. (We will extend
this notion naturally to Cr diffeomorphisms between subsets of manifolds X and Y .)

A map F : X → Y will be called a curve in Y if X is R and a function on X if Y isR. (The distinction between maps and functions is recommended in [225]. In the case of
curves, Y will usually carry at least a topological structure, and we will require F to be
continuous, differentiable or—most likely—even smooth. More about this later.) A curve
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or function is called proper iff it is not constant. Note that curves are normally defined on
closed intervals like [0, 1]. For purposes of differentiation, however, open intervals like ]0, 1[
are more appropriate; since they are diffeomorphic (as defined below) to the real line, a
curve may also be defined on open intervals via reparametrizations.

0.4 Maps in Vector Spaces

Now let U ⊆ Rm and V ⊆ Rn. Then the set of all continuous maps F : U → V is denoted
by C(U, V ), the subset of all r-times continuously differentiable maps by Cr(U, V ), the
subset of all smooth maps (meaning the union of all the sets Cr(U, V ) just introduced) by
C∞(U, V ), and the subset of all analytic maps by Cω(U, V ). For reasons of convenience,
one sets C0(U, V ) = C(U, V ), and one usually drops Y if it is the real line R. Note that
all these sets are real vector spaces (for Y = R even real algebras) and that U should be
open when r > 0 in order for the definitions to make sense.

A bijection F : U → V is called a Cr isomorphism between U and V if U and V are
open and if both F and F−1 are Cr maps. For r > 0 we prefer to use the speak of a
Cr diffeomorphism and for r = 0 of a C0 homeomorphism; the latter notion is clearly a
special case of the definition given earlier. If r is not mentioned, it is generally understood
as ∞. The derivative of a map F : U → V between open sets U ⊆ Rm and V ⊆ Rn at
a point x ∈ U is given by the Jacobian matrix F ′(x) if we use the standard bases (see
Subsection 1.1.1).

The case of curves and functions deserves special mention. For a curve c : R → Rn,
its tangent vector (also known as the “velocity vector”) for the parameter t ∈ R is to be
written as a column c′(t) ∈ Rn and viewed as the linear curve R → Rn representing the
tangent line (after the point c(t) is translated to the origin). The analogous convention for
a function f : Rn → R requires its cotangent vector (also known as the “gradient form”) at
the point x ∈ Rn to be written as a row f ′(x) ∈ Rn and understood as the linear functionRn → R describing its tangent hyperplane (after the constant f(x) is normalized to zero).
For linear curves h ∈ Rn and linear functions a ∈ Rn, these identifications lead to the
uniformity relations h′(t) = h for all t ∈ R and a′(x) = a for all x ∈ Rn.



Chapter 1

The Category of Manifolds

1.1 Embedded Manifolds

1.1.1 Differential Calculus in Vector Spaces

We first recall some notions and results from differential calculus. Let U be open in Rm

and let x ∈ U . The linear approximation of a differentiable map f : U → Rn locally at x
is called the differential dxf : Rm → Rn of f at x. It is the linear map uniquely defined by
the property that

f(x+ h) = f(x) + (dxf)h+ ‖h‖ψ(h)

for a map ψ with limh→0 ψ(h) = 0 and h sufficiently small. For the standard basis, the
differential is given by the Jacobian matrix

f ′(x) =

(
∂fi
∂xj

(x)

)

i=1,...,n
j=1,...,m

where f1, . . . , fn are the components of the map f .
Writing y = f(x), the chain rule

dx(g ◦ f) = dyg ◦ dxf

states that the linear approximation of the composite of two function is the composition
of the linear approximations. Hence the Jacobian matrix of a composite function

(g ◦ f)′(x) = g′(f(x)) f ′(x).

is the product of the Jacobian matrices of the two functions.
Let V ⊆ Rn be open and f ∈ C1(U, V ). Suppose that there exists an inverse g : V → U ,

which is differentiable. Applying the chain rule to

g ◦ f = 1U and f ◦ g = 1V ,

11
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we see that
dyg ◦ dxf = 1Rm and dxf ◦ dyg = 1Rn. (1.1)

Hence m = n since dxf is an isomorphism between vector spaces. Moreover, the Jacobian
matrix of the inverse function is given by the inverse of the Jacobian, g′(y) = f ′(x)−1.
Therefore g is also continuously differentiable and f is a C1 diffeomorphism. So if a
continuously differentiable function f has a differentiable inverse, the differential dxf is
an isomorphism so that the Jacobian matrix f ′(x) is regular for all x ∈ U . The inverse
mapping theorem, [936] or [30361], tells us what happens if the differential is invertible at
one point.

Now let f ∈ Cr(U,Rn). We call f a local Cr isomorphism at x if there exists an open
neighborhood U1 ⊆ U of x such that f |U1

is a Cr isomorphism, which implies in particular
that f(U1) is an open neighborhood of f(x).

1.1 Theorem (Inverse Mapping Theorem) Let f ∈ Cr(U,Rn) with r ≥ 1 and U ⊆Rn open, and choose a point x ∈ U . Then dxf is an isomorphism iff f is a local Cr

diffeomorphism at x.

We call a map f ∈ Cr(U,Rn) a local Cr isomorphism if it is one at all x in U . Note
that a bijective local Cr isomorphism is a Cr diffeomorphism. So if f is bijective and its
differential dxf is an isomorphism for all x in U , it is a Cr diffeomorphism.

1.1.2 Manifolds in Vector Spaces

We know from our experience that sitting on a sphere, the world around us looks flat.
Mathematically speaking, we could also say that, at least locally, there exists a smooth
coordinate change for the three dimensional space such that the sphere becomes an open
subset of the plane.

Let us make this first more precise for the sphere. The two-dimensional sphere in R3

is the set of points
S2 = {(x1, x2, x3) ∈ R3 | x2

1 + x2
2 + x2

3 = 1}.

We define an open subset

U+
3 = {(x1, x2, x3) ∈ R3 | x2

1 + x2
2 < 1 ∧ x3 > 0}

and the map Φ+
3 : U+

3 → R3 by

(x1, x2, x3) 7→ (x1, x2, x3 −
√

1 − x2
1 − x2

2).

Then Φ+
3 is obviously smooth with the smooth inverse

(y1, y2, y3) 7→ (y1, y2, y3 +
√

1 − y2
1 − y2

2).

defined on its image

A+
3 = {(y1, y2, y3) ∈ R3 | y2

1 + y2
2 < 1 ∧ y3 > −1},
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so it is a diffeomorphism. The image of Φ+
3 restricted to the sphere S2 is

Φ+
3 (S2 ∩ U

+
3 ) = A+

3 ∩ (R2 × {0}) = {(y1, y2, 0) | y2
1 + y2

2 < 1},

which is the open disk in the y1y2-plane of R3. Note that Φ+
3 |S2

is just the projection on
the first two coordinates. Clearly, we can define analogously diffeomorphisms Φ−

3 , Φ±
1 and

Φ±
2 such that their corresponding domains cover the sphere and their images restricted to

the sphere are the open disk in R2. We have thus interpreted the sphere S2 as a geometric
object embedded in R3.

More generally, we can think of an n-dimensional embedded submanifold of Rm (briefly
an embedded n-submanifold) as a subset M of Rm that is locally diffeomorphic to an open
subset of an n-dimensional subspace of Rm. Recall our subspace convention of regardingRn as a subset of Rn ×Rm−n = Rm in the sense that Rn × {0} ⊆ Rn ×Rm−n.

1.2 Definition We call a subset M of Rm an embedded n-dimensional Cr submanifold
of Rm if for every point p ∈ M there exists an open neighborhood U of p and a Cr

diffeomorphism Φ: U → A ⊆ Rm such that Φ(U ∩M) = A ∩Rn.

Let M be a an embedded n-dimensional Cr submanifold of Rm and p a point on M .
Let U be an open neighborhood of p and Φ: U → A a diffeomorphism as above, with
components Φ1, . . . ,Φm. We call Φ an ambient chart of M around the point p.

Locally, a manifold can be interpreted as the zero set of k = m− n functions. We call
k = m − n the codimension of M . We can just take gi = Φi+n for i = 1, . . . , k. Then
p ∈ M ∩ U iff gi(p) = 0 for i = 1, . . . , k. If we consider the map g : U → Rk with the
components g1, . . . , gk, we can can write this condition more compactly as

M ∩ U = g−1(0) ∩ U.

Suppose the manifold is at least C1. Since Φ is a diffeomorphism, we know that the
Jacobian matrix of Φ is regular at p. Therefore the rank of the Jacobian matrix g′(p) is k,
and the differential dpg is surjective. Using the Inverse Mapping Theorem 1.1, we will see
that this gives us a condition to define manifolds as zero sets of functions.

Let U be open in Rm and g : U → Rk be a differentiable map with k ≤ m. We call
x ∈ U a regular point of g if the differential dxg at x is surjective so that the rank of the
Jacobian matrix of g′(x) is k; otherwise we call it a critical or singular point of g. We call
c ∈ Rk a regular value of g if every x ∈ g−1(c) is a regular point of g. Note that this is in
particular the case when g−1(c) is the empty set.

As an example consider the function g : R3 → R, x 7→ x2
1 + x2

2 + x3
3. The gradient

g′(x) = (2x1, 2x2, 2x3) is nonzero and the differential dxg surjective iff x 6= 0. So any
nonzero vector is a regular point of g and the zero vector a singular point. Any c 6= 0 is a
regular value, since g−1(0) = ∅ for c < 0 and for any vector x ∈ g−1(c) with c > 0 at least
one component xi 6= 0, and 0 is a singular value.

1.3 Proposition Let U be open in Rm and g ∈ Cr(U,Rk) with r ≥ 1 and k ≤ m. Let x̃
be a regular point of g with value c = g(x̃) ∈ Rk. Then locally at x̃, the level set g−1(c) is
an embedded Cr submanifold of Rm of codimension k.
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Proof. After a translation by c we can assume that g(x̃) = 0. Observe that a translation
does not change the differential. Since dx̃g is surjective we can assume, after a suitable
reordering of coordinates, that the Jacobian matrix has the form

g′(x̃) =
(
g′1(x̃) g′2(x̃)

)
,

where g′2(x̃) is a regular k × k matrix. Let n = m− k. We consider the map Φ: U → Rm

with
(x1, . . . , xm) 7→ (x1, . . . , xn, g(x1, . . . , xm)).

The Jacobian matrix of Φ at x̃ is

Φ′(x̃) =

(
In 0

g′1(x̃) g′2(x̃)

)

.

It is a regular matrix since g′2(x̃) is regular and so Φ is a local Cr isomorphism at x̃ by the
Inverse Mapping Theorem 1.1. Therefore there exists an open neighborhood U1 ⊆ U of x̃
such that A1 = Φ(U1) ⊆ Rk is open and Φ|U1

is a Cr diffeomorphism from U1 to A1. Since

Φ(U1 ∩ g
−1(0)) = A1 ∩Rn,

we see that U1 ∩ g
−1(0) is indeed an embedded n-dimensional submanifold of Rm. �

1.4 Corollary If c ∈ Rk is a regular value of g, the level set g−1(c) is an embedded Cr

submanifold of Rm of codimension k.

Using this criterion, we can prove again that the sphere is a two-dimensional C∞

submanifold of R3. It is the set S2 = g−1(1) with g(x) = x2
1 + x2

2 + x3
3, and we have

seen before that 1 is a regular value of g. More generally, we see that the sphere

Sn = g−1(1), with g(x) = x2
1 + · · · + x2

n+1

is an embedded smooth n-dimensional submanifold of Rn+1.

1.1.3 From Ambient to Abstract Charts

In the definition of an embedded submanifold of Rm we used what we called “ambient
charts”, which are diffeomorphisms defined on some open subset of the ambient space Rm

that map the manifold to a linear subspace. What happens if we forget about the ambient
space and consider the “chart” obtained by restricting the ambient chart to the manifold
and then projecting to the first n coordinates? From the definition we know that such a
chart must be a bijection from a subset of the manifold to an open subset of Rn. It will
turn out that each chart is a homeomorphism, and we would actually like to say that it
must also be a diffeomorphism—but this does not make sense since its domain fails to be
open! Hence we will have to circumscribe this property in a roundabout way.
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Let M be an embedded n-submanifold of Rm and Φ: U → A be an ambient chart. Let

Û = U ∩M and Â = π(A ∩Rn)

where π : Rm → Rn denotes the projection π(x1, . . . , xm) = (x1, . . . , xn). Then Â is open
in Rn since every projection is an open map. We call the map

ϕ = π ◦ Φ|Û : Û → Â

an abstract chart, or briefly a chart. By Definition 1.2, every chart ϕ : Û → Â is then a
bijection between a subset Û of M and an open subset Â of Rn. (In our example of the
sphere the charts were projections on two coordinates.) Since an embedded submanifold
M is a subset of Rm it is naturally a topological space with the induced topology.

1.5 Proposition Every chart is a C0 homeomorphism.

Proof. By definition of the induced topology, Û = U ∩M is an open subset of M . The
restriction of a continuous map to a subset with the induced topology is again continuous,
and every projection is continuous. So a chart is a continuous bijective map and it remains
to show that ϕ = π ◦ Φ|Û is open. Let V̂ ⊆ Û be open, so that V̂ = V ∩ U ∩M with V
open in Rm. Since Φ is a diffeomorphism, Φ(V ) is open in Rm and therefore also

Φ(V̂ ) = Φ(V ∩ U ∩M) = Φ(V ) ∩ Φ(U ∩M) = Φ(V ) ∩ (A ∩Rn)

by Definition 1.2. Hence the projection π(Φ(V ) ∩A) = ϕ(V̂ ) is open in Rn . �

Now we have to face the problem of describing the differentiability of abstract charts—
even though their domains fail to be open. The key to solve this problem is consider the
“transition” of overlapping charts rather than single charts. Let ϕ : Û → Â and ψ : V̂ → B̂
be two charts. Then ϕ(Û ∩ V̂ ) and ψ(Û ∩ V̂ ) are open in Rn by the previous proposition.
When Û ∩ V̂ is not empty, we call the map

ψϕ−1 : ϕ(Û ∩ V̂ ) → ψ(Û ∩ V̂ )

the transition from the chart ϕ to the chart ψ. Note that the transition ψϕ−1 is a bijection
between open subsets of Rn, so we can ask if it is differentiable.

1.6 Proposition Every transition ψϕ−1 is a Cr diffeomorphism.

Proof. Let Φ: U → A and Ψ: V → B be the corresponding ambient charts. The transition
of the ambient charts ΨΦ−1 is then a Cr diffeomorphism from Φ(U ∩ V ) to Ψ(U ∩ V ). We
denote by ι : Rn → Rm the inclusion ι(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0). Then

ψϕ−1 = π ◦ ΨΦ−1 ◦ ι

is Cr since both injection and projection are C∞. We see analogously that the inverse
ϕψ−1 is Cr, and so the transition is a diffeomorphism. �
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From now on we consider only abstract charts and we will denote their domains and
codomains without hats to simplify the notation. By definition we have an ambient chart
around every point of an embedded submanifold. Hence there exists a family of charts
ϕi : Ui → Ai such that their domains cover M , meaning M =

⋃

i∈I Ui. We call such a
family an atlas of M . By the previous proposition, all charts in an atlas are mutually
compatible in the sense that their transitions are Cr diffeomorphisms.

Finally, we take the abstraction one step further and forget that we started with a
subset of Rm and take instead an arbitrary set M . We consider this set together with a
family of charts (bijections into open subsets of an Rn) such that their domains cover M
and that all charts are mutually compatible. This is the starting point for defining abstract
manifolds in the next chapter.

1.2 Abstract Manifolds

The motivation for defining manifolds in a more abstract, invariant manner comes from
the following observation: Even if we have a certain object as embedded in some RN , this
embedding often suffers from a number of flaws: it may not be “natural”, it may need the
embedding dimension N to be significantly higher than the dimension n of the manifold. In
fact, the famous Whitney Embedding Theorem [791] tells us that one may always(!) embed
an n-dimensional manifold into some RN with N ≤ 2n, but it also exposes the two flaws
just mentioned: The upper bound of 2n for the embedding dimension may be reached (this
is the case for the n-dimensional projective space) or it may at least be hard to find low
dimensions N ; and the embedding is not canonical, so to say adding bureaucratic ballast
to the essential structure of the manifold itself.

So let M now be just a set and n, r ∈ N. We will use A,B,C for open subsets of Rn

and U, V,W for any subsets of M . Furthermore, k is to range over {1, . . . , n}.

1.2.1 The Chart Topology

The crucial tools for abstracting from a surrounding vector space are the charts: they
can be used for pulling down all kinds of objects and relations on the “abstract level” of
M (usually pictured “above”), yielding numerical objects and relations on the “concrete
level” of coordinates in Rn (usually pictured “below”). Conversely, they also allow us to lift
objects and relations from the well-known Euclidean world of Rn to the more sophisticated
domain of M . Such definitions of additional structures via the atlas must of course be
independent of the choice of charts (“invariant under coordinate changes”).

1.7 Definition An n-dimensional chart is a bijection ϕ : U → A. It is said to be com-
patible with another chart ψ : V → B if ψϕ−1 is a Cr isomorphism between ϕ(U ∩ V ) and
ψ(U ∩V ). A family of mutually compatible charts is called an atlas if their domains cover
M .
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To be more explicit, we should actually speak of charts, compatibility and atlases of
class Cr. But r is to be fixed for the rest of this section, just like the dimension n and the
base set M .

The intuition behind these concepts can be fetched from the one example that provided
some of the standard terms: A good “atlas” partitions the EarthM into several overlapping
“terrains” U , which are depicted by “charts” ϕ : U → A on various “pages” A ⊆ R2 of the
atlas. So in the sense of the forthcoming definition, the Earth is indeed a two-dimensional
manifold (meaning its surface is approximated by one).

Some terminology on charts will be useful in the future.

• Since A ⊆ Rn, we can write the corresponding chart as ϕ = (ϕ1, . . . , ϕn) with
n so-called coordinate functions ϕ1, . . . , ϕn : U → R defined via the projection as
ϕk = δkϕ.

• Since every p ∈ U has n coordinates ϕ1(p), . . . , ϕn(p), a chart is also known as
a local coordinate system [768]. Its inverse ϕ−1 : A → U can be seen as a local
parametrization of M .

• An element p ∈ U is called a point, its image ϕ(p) = (ϕ1(p), . . . , ϕn(p)) ∈ A a
coordinate node, consisting of the n coordinates of p.

• In [46129] and [252], the domain U of a chart ϕ : U → A is called a coordinate neigh-
borhood. In these notes, we will refer to U simply as a chart domain, while A will
be called its coordinate patch embedded into the coordinate space Rn.

• If p ∈ U , one calls ϕ : U → A a chart around the point p. If A is an atlas, we write
Ap for the local atlas around p, containing all the charts ϕ ∈ A around p.

• A chart ϕ : U → A around p with the special property ϕ(p) = 0 will be called a chart
centered at p. We write Ap• for the centered atlas around p, consisting of all such
charts.

• For centered charts, one can restrict the axes δk from R → Rn to Ak → A for some
open set Ak ⊆ Rn and then build the so-called coordinate curves ϕk = ϕ−1δk : Ak →
U through p.

• The map ψϕ−1 from ϕ(U ∩V ) to ψ(U ∩V ) is variously called transition map [46114],
overlap map [1123] or change of coordinates [769]; we will simply call it the transition
from the chart ϕ to the chart ψ.

In order to define a topology on M , we apply the method of “pulling down” for the
first time: In order to see whether a set is open, we probe its openness under every chart
(restricting the set to the chart domain). The result will be called the chart topology on
M .
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1.8 Definition Let (ϕi | i ∈ I) be an atlas on M . Then we call a set U ⊆ M open in M
if ϕi(U ∩ Ui) is open in Rn for every chart ϕi with domain Ui.

1.9 Lemma The open sets form a topology on M .

Proof. The topology of Definition 1.8 is just the final topology of the family (ιi◦ϕ
−1
i : Ai →

M), where ιi : Ui → M is the insertion of the corresponding chart domains. In order to see
this, recall [632] that a set U in such a final topology is open iff (ιi ◦ϕ

−1
i )−1(U) = ϕi(U ∩Ui)

is open in Ai and hence in Rn; this is just what we have ein Definition 1.8. �

Since the charts translate between the abstract level of M and the concrete level of Rn,
we expect them to be homeomorphisms (they will even turn out to be diffeomorphisms
once we have defined what that means). The following proposition verifies this important
criterion for a reasonable notion of topology on M .

1.10 Proposition Every chart is a C0 homeomorphism.

Proof. Before proceeding to the charts, let us first remark that each chart domain Ui
is necessarily open since compatibility implies that ϕj(Ui ∩ Uj) is open for every chart
ϕj : Uj → Aj.

For showing that an arbitrary chart ϕi : Ui → Ai is a C0 homeomorphism, we must
prove that ϕi is both an open and a continuous map. Openness is easy: For an open
U ⊆ Ui, the image ϕi(U) = ϕi(U ∩ Ui) is open in Rn by the definition of the topology on
M . Note that since Ui is itself open, a subset of Ui is open in Ui iff it is open in M .

It remains to prove ϕi is continuous. For this, we choose A ⊆ Ai open in Rn and
prove ϕ−1

i (A) is open in M . So taking an arbitrary chart ϕj : Uj → Aj, we must show that
B = ϕj(ϕ

−1
i (A) ∩ Uj) is open. Since ϕ−1

i (A) ⊆ Ui and ϕi is bijective,

ϕ−1
i (A) ∩ Uj = ϕ−1

i (A ∩ ϕi(Ui ∩ Uj)),

so B = ϕjϕ
−1
i (A ∩ ϕi(Ui ∩ Uj)). Since A is open by hypothesis and ϕi(Ui ∩ Uj) by the

the compatibility requirement of the atlas, A∩ϕi(Ui ∩Uj) is also open. But compatibility
means that ϕjϕ

−1
i is diffeomorphic, and hence a fortiori homeomorphic, between the open

sets ϕi(Ui ∩Uj) and ϕj(Ui ∩Uj). Therefore it maps A∩ϕi(Ui∩Uj) to the open set B. The
chart ϕj : Uj → Aj being arbitrary, this shows that ϕ−1

i (A) is open and thus concludes the
proof that every chart ϕi : Ui → Ai is a C0 homeomorphism. �

The chart property stated Proposition 1.10 is even characteristic for the chart topology,
as we shall see now.

1.11 Proposition The topology on M is uniquely characterized by the requirement that
each chart is a C0 homeomorphism.
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Proof. Note that the characteristic property of making every chart a C0 homeomorphism
includes that the chart domains are open sets. Now consider any topology fulfilling the
characteristic property, and let M be the collection of its open sets.

We prove first that every set U ∈ M is open. For any chart ϕi : Ui → Ai, we have
Ui ∈ M, hence also U ∩ Ui ∈ M. By its characteristic property, ϕi maps sets in M to
open sets in Rn, so each ϕi(U ∩ Ui) is open, which means that U is indeed open.

For the other direction, we have to prove U ∈ M for every open set U ⊆ M , so we
assume ϕi(U ∩ Ui) is open in Rn for every chart ϕi : Ui → Ai. Since the chart domains
cover M , we have U =

⋃

i∈I(Ui ∩ U), and it suffices to prove Ui ∩ U ∈ M for each i ∈ I.
But every ϕi(Ui ∩ U) is open, so ϕ−1

i maps it to Ui ∩ U = ϕ−1
i ϕi(Ui ∩ U) ∈ M, due to its

characteristic property. �

In order to check whether a set is open, we have to probe its images under all charts. Intuition d
tells us that one could be more economic than this, using only those charts whose domains touch
the set in question. The following lemma confirms this expectation.

1.12 Lemma Consider an atlas (ϕi | i ∈ I) on M with charts ϕi : Ui → Ai and a set U ⊆ M
with U =

⋃

j∈J Uj for some J ⊆ I. Then U is open in M iff ϕj(U ∩ Uj) is open in Rn for every
j ∈ J .

Proof. The condition in the lemma is clearly necessary, so assume U ⊆M is such that ϕj(U ∩Uj)
is open in Rn for every j ∈ J . In order to prove that U is open in M , we have to take an arbitrary
chart ϕi : Ui → Ai and show that Bi = ϕi(U ∩ Ui) is open in Rn. If Bi = ∅, we are done; so
assume now Bi 6= ∅. Then it suffices to prove that an arbitrary point x ∈ Bi is an interior point.

Its preimage p = ϕ−1
i (x) lies in U ∩Ui ⊆ U , so there is a j ∈ J with p ∈ Uj. Since the charts

ϕj and ϕi are compatible, the coordinate patches ϕi(Ui ∩ Uj) and ϕj(Ui ∩ Uj) are open in Rn,
while ϕj(U ∩ Uj) is open by hypothesis. The chart ϕj being bijective, we see that

ϕj(U ∩ Ui ∩ Uj) = ϕj(Ui ∩ Uj) ∩ ϕj(U ∩ Uj)

is then also open.
The transition ϕiϕ

−1
j is a diffeomorphism between ϕj(Ui ∩ Uj) and ϕi(Ui ∩ Uj), so it maps

the open set ϕj(U ∩ Ui ∩ Uj) into the open set Ci = ϕi(U ∩ Ui ∩ Uj). Finally, we observe that
p ∈ U ∩ Ui ∩ Uj , so x ∈ Ci ⊆ Bi is indeed an interior point of Bi. �

The criterion of Lemma 1.12 could also be used for a definition of the topology on M , but

we think that Definition 1.8 is of a more uniform character (given as the final topology of the

parameterizations). u
1.2.2 Differentiable Structures

An atlas is a specific way of “charting” the set M , which means mapping it somehow
locally into Rn such that every point is reached by a chart. Usually there are many ways
of charting the set M ; as one sees already from using various coordinate systems in the
plane (like orthogonal, oblique, polar coordinates). So an atlas is far from being unique on
X; there are typically many alternative coordinate systems that one can use.
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1.13 Definition A chart ϕ : U → A is called admissible for an atlas (ϕi | i ∈ I) if ϕ is
compatible with every ϕi.

For example, we may always replace a chart ϕ : U → A around a point p by a chart ϕ̃
centered at p; simply choose ϕ̃ = ϕ−ϕ(p). We could even construct an atlas consisting of
charts ϕ : U → A such that A is the n-ball or n-cube centered at the origin [255]; let us call
such a chart ϕ a ball chart or cube chart, respectively. In any case, ϕ̃ will be an admissible
chart, and replacing ϕ by ϕ̃ obviously does not change the atlas in any essential way—this
is what leads us the concept of atlas equivalence.

1.14 Definition Two atlases are said to be equivalent if each chart of one is admissible
for the other.

One can show that this is indeed an equivalence relation on atlases. Moreover, one sees
that an atlas A is equivalent to an atlas B iff A∪B is still an atlas. As one would expect,
the topology on M depends only on the equivalence class of an atlas.

1.15 Proposition Let A be an atlas for M . Then every chart ϕ : U → A admissible for
A is a C0 homeomorphism.

Proof. First of all, it is clear that U is open since ϕi(U ∩ Ui) is open for every i ∈ I. This
follows from the fact that each transition ϕϕ−1

i is a diffeomorphism between the open sets
ϕi(Ui ∩ U) and ϕ(Ui ∩ U).

Now we have to prove that ϕ : U → A is both open and continuous. Starting with
openness, let us take an open set V ⊆ U and prove that ϕ(V ) is open in Rn. There is a
chart domain Uj around every point in V , so we obtain an open cover V =

⋃

j∈J(Uj ∩ V )
for a suitable J ⊆ I. Then ϕ(V ) =

⋃

j∈J ϕ(Uj ∩ V ), so it suffices to prove that ϕ(Uj ∩ V )
is open for arbitrary j ∈ J . But we know that ϕj(Uj ∩ V ) is open by the definition of the
chart topology, while ϕϕ−1

j is a diffeomorphism between ϕj(Uj ∩U) and ϕ(Uj ∩U). Hence

ϕ(Uj ∩ V ) = (ϕ ◦ ϕ−1
j )ϕj(Uj ∩ V ) is indeed open.

As for the continuity of ϕ : U → A, we can repeat the proof of Proposition 1.10,
replacing the chart ϕi by the admissible chart ϕ. �

1.16 Corollary Let (ϕ̄j | j ∈ J) be an atlas equivalent to the atlas (ϕi | i ∈ I). Then
U ⊆M is open in M iff ϕ̄j(U ∩ Ūj) is open in Rn for every chart ϕ̄j with domain Ūj.

Proof. Every chart ϕ̄j is admissible for the atlas (ϕi | i ∈ I) and hence a C0 homeomor-
phism by Proposition 1.15, so ϕ̄j(U ∩ Ūj) is open as the image of the open set U ∩ Ūj . �

Using all admissible charts, we can characterize the neighborhood of a point in a very
intuitive manner: A chart domain around p is clearly a neighborhood of p, and using all
admissible charts turns out to be enough to build up a neighborhood base. (The chart
domains of the atlas itself will typically just be enough to cover M , it will not contain
arbitrarily small neighborhoods of a point.)



CHAPTER 1. THE CATEGORY OF MANIFOLDS 21

1.17 Proposition The admissible chart domains around a point p form a neighborhood
base around p.

Proof. We have to show that every neighborhood of p contains an admissible chart domain
V around p. A neighborhood of p is any set that contains an open set U with p ∈ U . Since
the chart domains cover M , there is a Ui with p ∈ Ui. Clearly Ui is open in M , hence
also V = U ∩ Ui, which is obviously an admissible chart domain, belonging to the chart
ϕi|V . �

We have seen that there are usually many different but mutually equivalent atlases for
M ; the only “invariant” one is the maximal atlas: the one containing all admissible charts.
Every equivalence class contains a unique atlas with this property of being maximal with
respect to ⊆.

1.18 Definition A differentiable structure on M is a maximal atlas on M .

Some books like [1124] take equivalence classes instead of maximal atlases, but this is
clearly the same due to the bijective correspondence mapping an equivalence class [A] to
its maximal atlas

⋃
[A] and a maximal atlas M to its equivalence class {A | A ⊆ M}.

The atlas Amax =
⋃

[A] is obtained by adding to A all charts admissible for A, so it yields
the unique maximal atlas containing A, called the differentiable structure generated by A.
This is also how one uses differentiable structures in practice: by listing (typically finitely
many) charts A = {ϕ1, . . . , ϕn} and then passing to Amax.

The set M together with a differentiable structure is called an n-dimensional Cr man-
ifold if it fulfills certain topological constraints in order to avoid pathologies; the precise
definition will be given in Subsection 1.2.4, together with a brief discussion of the topologi-
cal constraints to be imposed. For the moment, however, we may ignore these complications
and we rather give some first examples of manifolds (as we shall confirm later). The first
two are the easiest at all. If we are already in Rn, a chart need not do anything; if we are
in an “abstract vector space”, we can still do with a single chart!

1.19 Example The canonical differentiable structure on the Euclidean space Rn is in-
duced by the atlas {1Rn} and comprises all Cr isomorphisms between open sets of Rn.

Proof. The chart domain of the bijection 1Rn trivially covers all of Rn, and there is no
compatibility relation; hence {1Rn} is indeed an atlas. An admissible chart ϕ : U → A
between open sets U,A ⊆ Rn has to be compatible with 1Rn, which means that ϕ◦1−1Rn = ϕ
must be a Cr isomorphism. �

1.20 Example Let V be an n-dimensional vector space and choose a basis (b1, . . . , bn) for
V . Then the canonical differentiable structure on V is induced by the atlas {ϕ}, with the
component chart ϕ : V → Rn given by v 7→ (λ1, . . . , λn) for every vector v = λi bi ∈ V .
Bases and component charts are in bijective correspondence with each other.
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Proof. The component charts are obviously linear isomorphisms and therefore also home-
omorphisms; then we know from Proposition 1.11 the chart topology coincides with the
canonical topology of V , which is the only one that makes V a Hausdorff space [2332] [4I.13].
The bijection between bases and component charts is evident [2727]. �

A slightly more general situation is given by the embedded manifolds treated in Sec-
tion 1.1. (Note also that every open subset U of Rn is trivially an embedded n-dimensional
submanifold of Rn; as an atlas, one may simply take 1U . The previous Example 1.19 is
the case U = Rn.)

1.21 Example The charts of an embedded submanifold M of Rm form an atlas on M
whose topology coincides with the induced topology inherited from Rn.

Proof. By Definition 1.2, the chart domains cover M . Furthermore, we have proved in
Proposition 1.5 that all charts are bijections and in Proposition 1.6 that they are mutually
compatible. So the charts of M indeed make up an atlas.

Finally, we have seen in Proposition 1.5 that all charts of M are C0 homeomorphisms
when M is regarded with its induced topology as a subset of Rn. But Proposition 1.11
tells us that there is only one topology on M that fulfills this criterion, so it must coincide
with the chart topology of M . �

1.22 Example Let Pn(R) = (Rn+1 \ {0})/ ∼

with the equivalence defined as

a ∼ b iff a = λb for some λ ∈ R∗

be the n-dimensional real projective space. So a point in M = Pn(R) is an equivalence
class [a] with (a0, . . . , an) ∈ Rn+1 \ {0}, usually denoted by (a0 : . . . : an). With

Ui = {(a0 : . . . : an) | ai 6= 0}

and Ai = Rn, define maps

ϕi : Ui → Ai

(a0 : . . . : an) 7→

(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an
ai

)

,

for all i = 0, . . . , n. Then the maps (ϕ0, . . . , ϕn) are well-defined and constitute an n-
dimensional smooth atlas.

Proof. Note that the condition ai 6= 0 is independent of the representative. If [a] = [b],
then ak = λbk and so bk

bi
= λak

λai
= ak

ai
. Hence the maps ϕi are well-defined. Their domains
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Ui obviously cover M and their codomains Ai are open. The maps ϕi are bijective with
inverses

(x1, . . . , xn) 7→ (x1 : . . . xi : 1 : xi+1 : . . . : xn).

We have to show that the charts ϕi are mutually compatible. Let i 6= j. Then

Ui ∩ Uj = {(a0 : . . . : an) | ai 6= 0 ∧ aj 6= 0}

and the images ϕi(Ui ∩ Uj) = {x ∈ Rn | xj 6= 0} and ϕj(Ui ∩ Uj) = {x ∈ Rn | xi 6= 0} are
open in Rn. We assume i < j. Let x = (x1, . . . , xn) ∈ ϕi(Ui ∩ Uj). Then ϕjϕ

−1
i (x) equals

ϕj(x1 : . . . : xi : 1 : xi+1 : . . . : xn) =

(
x1

xj
, . . . ,

xi
xj
,

1

xj
,
xj+1

xj
, . . . ,

xj−1

xj
,
xi+1

xj
, . . . ,

xn
xj

)

,

so the transitions ϕjϕ
−1
i are diffeomorphisms and ϕ0, . . . , ϕn constitute an atlas. �

Finally, let us also mention another simple way of getting concrete manifolds: the open
subsets of a given manifold! We will see in Subsection 1.4.1 how we can view this as a
special case of forming submanifolds.

1.23 Example If M has a differentiable structure A, every open set U of M has a canon-
ical differentiable structure consisting of the restrictions to U of all the charts in A.

Proof. If ϕ is any chart of A, it is compatible with any other chart ψ of A. But then ϕ|U
is clearly also compatible with every other restricted chart ψ|U . Moreover, their domains
cover U , so they make up an atlas A|U that provides U with a differentiable structure. �

1.2.3 Manifolds as Patchwork

The above viewpoint—charts as a tool for locally exploring an intricate structure by pulling
it down to a Euclidean space—might be called the analytic point of view. But one may
also ascribe a more synthetic role to the charts of an atlas [83]: In order to construct
the manifold, one has to put the coordinate patches (hence their name!) together and
glue them on their overlaps according to their transitions [4215]. Readers familiar with
the language of schemes will notice a striking similarity with gluing schemes as explained
in [2080].

In detail, if (ϕi : Ui → Ai | i ∈ I) is an atlas for M and if M̃ is the topological sum [633]
of all coordinate patches Ai, construct the quotient space M̃/∼, where ∼ is defined as
follows (all other points being equivalent only to themselves): For x ∈ ϕi(Ui ∩ Uj) and
y ∈ ϕj(Ui ∩ Uj) we put

(x, i) ∼ (y, j) iff y = ϕjϕ
−1
i (x).

It turns out that this quotient space is essentially a reconstruction of M .

1.24 Proposition Using the above construction based on an atlas (ϕi : Ui → Ai), the
topological space M̃/∼ is homeomorphic to M .
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Proof. Define f : M → M̃/∼ by f(p) = [ϕi(p), i]∼, where ϕi : Ui → Ai is any chart
around p. Note that f is well-defined: If ϕj : Uj → Aj is another chart around p, we
have (ϕi(p), i) ∼ (ϕj(p), j). But f is both continuous and open since it is the composition
of three maps having this property [650]: the homeomorphism ϕi, the insertion Ai → M̃ ,
and the canonical map M̃ → M̃/∼. (For the canonical map, openness follows [652] because
the equivalence is induced by a group of homeomorphisms acting on M̃/∼.)

For obtaining an inverse, we define g : M̃/∼ → M by g([x, i]∼) = ϕ−1
i (x) if x ∈ Ai

and ϕi : Ui → Ai is the corresponding chart. Again it is clear that g is well-defined: If
(x, i) ∼ (y, j) for y ∈ Uj with another chart ϕj : Uj → Aj, we have ϕ−1

i (x) = ϕ−1
j (y) by the

definition of ∼. It remains to show that g is the inverse of f , which is immediate: We have

g(f(p)) = g([ϕi(p), i]∼) = ϕ−1
i (ϕi(p)) = p

together with
f(g([x, i]∼)) = f(ϕ−1

i (x)) = [ϕi(ϕ
−1
i (x)), i]∼ = [x, i]∼,

as required. �

One may also turn this idea upside-down [39], arriving at the historical roots of manifolds: d
A differentiable structure can be given by specifying a family (Ai | i ∈ I) of open sets Ai ⊆ Rn
together with gluing diffeomorphisms ιji : Aij → Aji connecting the patches along their “fringes”
Aij ⊆ Ai and Aji ⊆ Aj. The ιji are to play the role of the transitions ϕjϕ

−1
i , but we are now

independent of any pre-given set M whose subsets Ui and Uj would serve as the domains of the
corresponding charts ϕi and ϕj . In fact, we have no charts at all; only their “transitions” are
given by the gluing diffeomorphisms ιji.

In order to glue corresponding points together, we need an equivalence ∼, to be defined on
the topological M̃ of the coordinate spaces Ai in a completely analogous manner as before, using
the gluing diffeomorphisms in place of the chart transitions: For x ∈ Aij and y ∈ Aji we set
(x, i) ∼ (y, j) iff y = ιji(x), again viewing all other points equivalent only to themselves. The
requirement that ∼ be an equivalence relation on M̃ implies three constraints on the ιji: We
must have ιii = 1Aii for reflexivity, ι−1

ji = ιij for symmetry, and ιkjιji = ιki for transitivity. A
short moment’s reveals that the last condition (corresponding to the “cocycle condtion” for fiber
bundles, explained in Subsection 2.3.1) already entails the other two. All this amounts is to
guarantee a consistent specification of the gluing process.

This yields a parametrization Ai → M̃/∼ defined by x 7→ [x, i]∼ and easily seen to be injective
as well as continuous and open, using a similar argument as in the proof above. Writing Ui for
the image of this parametrization, its inverse is then a homeomorphism ϕi : Ui → Ai, acting by
[x, i]∼ 7→ x . Using the criterion of Proposition 1.11, we see now that M̃/∼ now bears the topology
induced by the atlas (ϕi | i ∈ I) or its generated differentiable structure. Let us reassure ourselves
that the chart transitions ϕjϕ

−1
i are now given by the gluing diffeomorphisms ιji. Taking x ∈ Aij ,

we compute
ϕjϕ

−1
i (x) = ϕj [x, i]∼ = ϕj [ιji(x), j]∼ = ιji(x).

Hence the differentiability requirements on the ιji carry over to the differentiable structure on

the set M̃/∼, which is thus an n-dimensional Cr manifold whenever the gluing diffeomorphisms

are Cr and the topological conditions are fulfilled (see the next subsection). We call this the

patchwork construction of a differentiable manifold. u
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1.2.4 The Definition of Manifold

Finally now the official definition of a manifold, which imposes two crucial conditions on
the induced topology of M .

1.25 Definition The set M together with a differentiable structure of class Cr is said to
be a Cr manifold of dimension n or an n-manifold of class Cr if M is a second-countable
Hausdorff space when endowed with the chart topology.

A Cr manifold with r = 0 is also called a topological manifold. In this case, an atlas just
provides local homeomorphisms into Rn; topological spaces admitting such an atlas are
also called locally Euclidean. In other words, a topological manifold is a locally Euclidean,
second countable Hausdorff space. By Proposition 1.11 the topology of M is uniquely
determined by the condition that each chart is a C0 homeomorphism, so the maximal
atlas (the “differentiable structure” of class C0) is uniquely determined by the topology of
M . Hence it does not make sense to regard the charts as an additional structure on the
topological space M .

The situation is drastically different as soon as we consider r > 0. As before, we speak of d
differentiable or smooth or analytic manifolds for r ∈ N or r = ∞ or r = ω, respectively. (Similar
conventions are in force for various related concepts like atlas or differentiable structure.) For
example, evenR admits—besides the standard differentiable structure generated by the identity—
various other ones, like the one generated by the chart ϕ : R → R with ϕ(x) = x3. For R it
turns out that the resulting manifolds are still all diffeomorphic (in a sense that will soon be
made precise); in fact, it is known [172] that the only one-dimensional manifolds are the lineR and the circle S1. In contrast—just to mention Kervair and Milnor’s famous example [25]—
there are 27 exotic seven-dimensional spheres (a sphere is called exotic when endowed with a
differentiable structure distinct from the standard one), while certain topological manifolds admit
no differentiable structure at all [7163]. So it does make sense to speak of specific differential
structures imposed on a topological space.

This is why some authors like [253], [223], [768], [12161] define manifolds as topological spaces
with a differentiable structure imposed on them. As argued in [46134], this is not very convincing:
Who introduces a metric space M as a topological space with a continuous map M ×M → R
fulfilling the metric axioms? What one usually does is better viewed as follows: If one wants to
metrize a given topological space, the continuity of the metric is an additional constraint that
guarantees that the metric structure is compatible with the topology. In the same way, we can
view Proposition 1.11 as an additional constraint for imposing a differentiable structure on a given
topological space; this is essentially what we did in showing that the patchwork construction can
be used for specifying a differentiable structure.

For the degenerate dimension n = 0, each chart ϕ : U 7→ A around a point p maps into
A ⊆ R0 = O, so A = {0} and U = {p}. Being chart domains, all singletons {p} are therefore
open sets, so M carries the discrete topology. This means a 0-dimensional manifold is the
same as a discrete topological space (of any smoothness class), and obviously there is only one
“differentiable structure” providing this topology. (An even more degenerate case occurs in the
case M = ∅; for convenience reasons, one regards this “manifold” as being of every dimension
and every smoothness class.)
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What happens if we allowed non-Hausdorff almost-manifolds? A famous example is the drilled
line built over R∗ = R \ {0}. Here M = R∗ ∪ {0+, 0−} with two separate (mutually distinct)
zeros 0+, 0− 6∈ R. We introduce an atlas containing two charts

ϕ± : U± → R with domains U± = R∗ ∪ {0±},

defined by ϕ(p) = p if p ∈ R∗ and ϕ(0±) = 0. The charts ϕ+ and ϕ− obviously form an atlas,
which generates a differentiable structure (even of class Cω) on M . In this topology, any two
neighborhoods of 0+ and 0− intersect, so M is not a Hausdorff space.

Our next remark concerns the countability requirement. Recall that we call a topological
space first countable if it has a countable local base and second countable if it has a countable
global base. (A local base is the same thing as a neighborhood base: around each point, any
neighborhood contains a base neighborhood. A global base provides enough open sets to generate
all open sets as union of base sets.) Since Rn is clearly first countable and each chart maps
its domain homeomorphically into Rn, any set M that admits an atlas is automatically first
countable.

In order to qualify as a manifold, it must fulfill the stronger requirement of second countability.
A weird example of a first but not second countable almost-manifold is the repeated line, the
disjoint union of uncountably many copies of R. (Note that the Hausdorff axiom is obviously
fulfilled, so the only flaw of this example is the lack of second countability!) For another strange
example (also fulfilling all the other properties and moreover being connected), see [759].

Altogether, the purpose of the two topological conditions is to ensure that we can do global
analysis on manifolds: Loosely speaking, the Hausdorff axiom guarantees unique limits (like
derivatives) and thus accounts for the analysis part, whereas second countability employs parti-
tions of unity—to be introduced soon—for pasting together local data (like solutions of a differ-
ential equation on a small chart domain) into global objects and so provides the global part. Note
that while the Hausdorff axiom tends to increase the number of open sets, second countability
restricts them; in this sense, the topological conditions force a certain equilibrium on the open
sets.

There is also another way of interpreting the topological requirements: they are exactly
what is needed to embed manifolds into vector spaces, as achieved by the Whitney Embedding
Theorem [791]. More precisely, a connected Hausdorff space with a differentiable structure is
embeddable into a vector space iff it is a second countable [176]. In this sense, we can clearly
see the requirement of doing “global analysis”: It is just an abstract (and therefore often more
economic) way of doing calculus in Rn.

Let us at least mention that one can develop substantial theory without some of these re-
quirements: See for example [31], which starts out without Hausdorff axiom or second countability
(even allowing charts to map into inifinte-dimensional Banach spaces instead of Rn). Some au-
thors drop just second countability as [1126] [5912] [426], others just the Hausdorff axiom as [197]
or Olver in restricted parts [44212].

A less drastic weakening that is occasionally applied [24] is to replace second countability by
paracompactness, which means that every open cover admits a locally finite open refinement [694].
It turns out that this is all one needs for partitions of unity [5934], but of course one loses
embeddability. In the presence of Hausdorff axiom, there are various conditions equivalent to this
one, most importantly metrizability, separability of the connected components, and the possibility
of building Riemannian metrics [285]. Generalizing from second countability to paracompactness
just allows uncountably many connected components each of which must be second countable [40].
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This brings us to another condition that is often required in addition to the ones we stipulated:

that M be connected as a topological space. In the presence of this third requirement, second

countability and paracompactness actually coincide (the repeated line is paracompact, missing

second countability only due to its failure of being-connected). In fact, the paper [17] lists 88(!)

subtly different versions of paracompactness that all happen to coincide on connected manifolds.

On a connected manifold, we could actually drop the equidimensionality requirement that all

charts be n-dimensional for a fixed n ∈ N since the dimension is constant on each connected

component. (If we dropped equidimensionality on non-connected manifolds, we would end up

with aconnected components each of which is a manifold of possibly different dimension.) u
In these notes, we keep only the two conditions (Hausdorff axiom and second count-

ability) in Definition 1.25, and we state explicitly when a manifold is to be connected
(but the connected components must have the same dimension.) For the future it is more
practical to ensure these two conditions directly by a suitable atlas, as in [443]. This is
done by requiring a countable atlas (ϕi : Ui → Ai | i ∈ N) for M such that for any two
distinct points p, q ∈ M with p ∈ Ui and q ∈ Uj there are open sets A,B ⊆ Rn with
ϕi(p) ∈ A ⊆ Ai and ϕj(q) ∈ B ⊆ Aj such that ϕ−1

i (A)∩ϕ−1
j (B) = ∅. The latter condition

is an obvious restatement of the Hausdorff axiom, while the subsequent lemma guarantess
second countability when the charts are indexed by N.

1.26 Lemma A locally Euclidean space admits a countable atlas iff it is second countable.

Proof. Assume first (ϕi : Ui → Ai | i ∈ N) is a countable atlas for a locally Euclidean
space M . Then every chart domain Ui satisfies the second axiom of countability since it is
homeomorphic to Rn, so let (Vij | j ∈ N) be a base for Ui. Any open set U ⊆M can then
be decomposed as

U =
⋃

i∈N(U ∩ Ui) =
⋃

i∈N ⋃

j∈Ji

Vij

if each U ∩Ui =
⋃

j∈Ji
Vij is the corresponding decomposition in Ui, with index set Ji ⊆ N.

Hence (Vij | i, j ∈ N) is a countable base for M .
Conversely, assume that M is second countable, so there is a base (Vi | i ∈ N) of open

sets for M . If (ϕi : Ui → Ai | i ∈ I) is any atlas for M , we can expand its chart domains
in terms of the base as

Ui =
⋃

j∈Ji

Vj

for suitable index sets Ji ⊆ N. Now we construct an atlas (ψj | j ∈ J) with the countable
index set

J =
⋃

i∈I

Ji ⊆ N
as follows. For every j ∈ J , there is an i ∈ I with j ∈ Ji, so that Vj ⊆ Ui. Now let ψj be
the restriction of the chart ϕi : Ui → Ai to Vj . It is now clear that (ψj | j ∈ J) forms an
atlas since its chart domains Vj are sufficient for covering any base set Ui, which in turn
cover M . �
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Just as second countability guarantees a countable atlas, the next lemma states that
compactness guarantess a finite atlas (more suggestively for connected manifolds: para-
compact ⇒ countable atlas, compact ⇒ finite atlas). Note that a manifold with a finite
atlas need not be compact as we see in the example R with its standard differentiable
structure (generated by the identity). By the converse of the lemma we can obtain non-
compact manifolds if we can show that they do not admit any finite atlas—the “infinite
doughnut” seems to be a case in point.

1.27 Lemma A locally Euclidean space M admits a finite atlas if it is compact.

Proof. Assume M is compact and choose any atlas (ϕi : Ui → Ai | i ∈ I). Then (Ui | i ∈ I)
is an open covering of M , so compactness yields a finite subcovering (Uj | j ∈ J) with
J ⊆ I. Obviously (ϕj : Uj → Aj) is a finite atlas for M . �

1.3 Maps between Manifolds

1.3.1 Differentiability of a Map

In the sequel, we will have to consider more than one manifold (with its various structures
like atlas and later also tangent spaces, tensor spaces etc) at a time. It would be quite
cumbersome to always refer explicitly to the manifold they come from. Hence we will omit
type references when the context makes it clear. For example, speaking of a chart around
a point, we refer to a chart in the differentiable structure of the manifold containing this
point.

Fix a differentiability order r, together with an m-manifold M and an n-manifold N ,
each at least of (possibly distinct) class Cr. In the sequel, we the term differentiable should
be understood as being of class Cr; this obviously includes all classes Cs with r ≤ s. In
the same vein, an isomorphism is to be understood as a Cr isomorphism, and so on for all
concepts that will be defined in dependence on r. The explicit reference Cr is only used
when needed.

In order to deal with maps f from M to N , the crucial tool is once again the method
pulling down, producing a kind of shadow of f .

1.28 Definition Let ϕ : U → A be a chart around p ∈ M and ψ : V → B a chart around
f(p) ∈ N with f(U) ⊆ V . Then fψϕ = ψfϕ−1 : A → B is called the local representative
of f around p, with respect to the charts ϕ and ψ.

The terminology and notation is taken from [1131], except that we prefer to write fψϕ
rather than fϕψ to reflect the traditional notation of functional composition. Note also
that being a local representative with respect to some charts includes the above-stated
condition of mapping one domain into the other.

We observe that a transition from a chart ϕ : U → A to another chart ϕ′ : U ′ → A′ of
a manifold M is the local representative of 1 : M → M with respect to ϕ and ϕ′ since we
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have
1ϕ′ϕ = ϕ′ϕ−1 : ϕ(U ∩ U ′) → ϕ′(U ∩ U ′).

From now on we will employ this as a notation for transitions.
We can now apply the local representative of a map for defining differentiability at a

given point.

1.29 Definition We say f : M → N is differentiable at the point p ∈ M if there is a
differentiable local representative fψϕ around ϕ(p), using some suitable charts ϕ around p
and ψ around f(p).

As one can see easily, the definition does not depend on the choice of the charts ϕ and
ψ: If other charts ϕ′ and ψ′ are chosen instead of ϕ and ψ, we see that

fψ′ϕ′ = 1ψ′ψfψϕ1ϕϕ′

is also differentiable at ϕ′(p) since both transitions 1ψ′ψ and 1ϕϕ′ are isomorphisms. Instead
of saying that f is differentiable at p, we may also call f continuous or smooth or analytic
at p, in the respective cases s = 0 or s = ∞ or s = ω. For the first case, this actually needs
some justification.

1.30 Lemma A map f : M → N is continuous at p ∈M iff some local representative fψϕ
is continuous around ϕ(p).

Proof. If f is continuous around p, we can choose an arbitrary chart domain V around f(p)
and then find a sufficiently small neighborhood Ũ of p with f(Ũ) ⊆ V . By Proposition 1.17
we can pick a chart domain U ⊆ Ũ , and again we have f(U) ⊆ V . Hence we may form
the local representative fψϕ = ψfϕ−1, which is then continuous around ϕ(p) since f is
continuous around p and ϕ as well as ψ are isomorphisms.

Conversely, assume fψϕ is continuous at ϕ(p) for some charts ϕ : U → A and ψ : V → B
with f(U) ⊆ V . Then ψ maps any neighborhood V0 ⊆ V of f(p) to a neighborhood
ψ(V0) ⊆ B of ψf(p) = fψϕ(ϕ(p)) since it is open. By the continuity of fψϕ : A → B, we
can find a neighborhood ϕ(U0) ⊆ A of ϕ(p), with U0 ⊆ U being a neighborhood of p, such
that fψϕ(ϕ(U0)) ⊆ ψ(V0) or equivalently f(U0) ⊆ V0. �

As to be expected, we call a map differentiable if it is differentiable at every point, so
all its local representatives are.

1.31 Definition A map f : M → N is called differentiable if its local representatives fψϕ
are, for all charts ϕ in M and ψ in N .

If the differentiability order is to be mentioned explicitly, one speaks of an r-times
differentiable or Cr map. The class of all Cr maps from the manifold M to the manifold N
is denoted by Cr(M,N). It is a trivial exercise to check that the identity is differentiable
and that composition preserves differentiability. Hence we obtain a category with objects
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the manifolds of class at least Cr and morphisms the Cr maps. (The most important case
is the so-called smooth category, consisting of smooth manifolds and smooth maps).

As with the test of openness, we should expect that it suffices to check differentiability
of maps with respect to an atlas [1132].

1.32 Lemma A map f : M → N is differentiable iff the local representatives of f relative
to some atlases of M and N are so.

Proof. If f is differentiable, the conclusion follows trivially. The converse follows from
the observation that any admissible chart domain may be obtained by the following three
operations: chart transition, union, restriction; all these operations preserve the differen-
tiability of the corresponding local representatives. �

Lemma 1.32 is of particular importance if M or N is an open subset of some vector
space, which can be charted by identity map alone (see Example 1.19). So if M is an open
set U ⊆ Rm and N an open set V ⊆ Rn, we regain the old definition Cr(U, V ) given in
Chapter 0. The notion of diffeomorphism between manifolds is also inspired by the case
of Rn.

1.33 Definition We call a bijection f : M → N a diffeomorphism if both f and f−1 are
differentiable; in this case, M and N are said to be diffeomorphic.

Since any open sets U ⊆ M and V ⊆ N may be regarded as submanifolds (see Ex-
ample 1.23), this extends to maps f : U → V . In accordance with our conventions of
Chapter 0, we always imply that U and V are open when stating that f : U → V is an iso-
morphism (again preferring the term C0 homeomorphism for r = 0 and Cr diffeomorphisms
for r > 0). By Lemma 1.30, this is also consistent in the case r = 0.

We see now immediately that every coordinate chart ϕ : U → A is a diffeomorphism,
and all coordinate curves / functions are differentiable curves / functions. Furthermore,
the differentiable structure of a manifold consists exactly of all diffeomorphisms from open
subsets into the coordinate space.

We say that f : M → N is locally diffeomorphic at a point p if it acts as a diffeo-
morphism in an open neighborhood of p. (This usage of the term “locally diffeomorphic”
is nonstandard but seems practical. Postnikov [46226] uses the term “étale”, alluding to
certain analogies in algebraic geometry.) If f is diffeomorphic at every point p ∈ M , it
is called a local diffeomorphism. Note that a local diffeomorphism is a fortiori also a lo-
cal homeomorphism and hence an open map. The diffeomorphisms are just those local
diffeomorphisms that are additionally bijective.

1.3.2 The Sheaf Structure on a Manifold

In the previous section, we have treated smooth maps defined on the whole manifold M . As
we have seen in the case of the charts (or the coordinate functions they contain), it is often
relevant to consider maps that are only locally defined. In fact, it is often crucial to cut
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down a global or local map to a narrower domain—see the proof (sketch) of Lemma 1.32 for
a case in point. The underlying notion of functional restriction can best be analyzed if one
focuses on differentiable functions on M ; as mentioned before, this includes the coordinate
functions of M .

The desire to capture the notion of functional restriction emerges in various other
branches of mathematics, most notably in algebraic geometry [2069], and one usually codi-
fies restriction by a standard structure called sheaf. As we do not intend to build up sheaf
theory at this place, it will be sufficient if we review briefly how sheaves are defined. For
our purposes, we are only interested in sheaves of algebras (one may of course supply any
other category—like [2061] who uses mainly abelian groups—in place of algebras), and we
prefer to enunciate the definition without explicit use of categories. By using algebras, we
imply that “homomorphisms” should be understood in the sense of algebras.

Before going to sheaves, one usually starts with a preliminary structure, called a pref-
sheaf —it incorporates an abstract notion of functional restriction, but still lacks the power
to use this notion effectively in pasting together functions from local patches: this will be
the task of sheaves.

1.34 Definition A presheaf on a topological space X is a map F that associates an al-
gebra F(U) with any open set U ⊆ X, together with so-called restriction homomorphisms
resV,U : F(U) → F(V ) for any open sets V ⊆ U ⊆ X, such that resU,U = 1F(U) and
resW,V resV,U = resW,U .

The elements of F (U) are usually called sections ; the reason for this terminology will
become clear in Subsection 2.3.1. Section from F(X) are also called global, all other
ones local. In many important cases, the sections f ∈ F(U) are actual functions on the
open set U , and resU,V is the set-theoretic restriction from the domain U to the smaller
domain U . In this case, one can safely abbreviate resV,U(f) by the familiar notation f |V ,
since a map f encodes its domain U as explained in Chapter 0. Note that the presheaf
axioms are then automatically fulfilled as long as the restriction is closed in the sense that
resV,U F(U) ⊆ F(V ).

In order to get a sheaf, one has to ensure two further properties about “patching
functions”: Every open cover (Ui | i ∈ I) must fulfill the following conditions: Two sections
coincide whenever they have the same restriction on each Ui; and any family of sections
on Ui with common restrictions comes from a single section. Some authors like [53391]
subsume the first axiom into the second by requiring the unique existence of the single
section f ∈ F(U). Let us now formulate the definition in a bit more detail.

1.35 Definition A presheaf F is called a sheaf if every open cover (Ui | i ∈ I) satisfies
the following two axioms:

1. For f, g ∈ F(U) with resUi,U f = resUi,U g for all i ∈ I, we have f = g.

2. If fi ∈ F(Ui) is such that resUi∩Uj ,Ui fi = resUi∩Uj ,Uj fj for all i, j ∈ I, there is an
f ∈ F(U) with resUi,U f = fi for all i ∈ I.
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We may remove axiom (1) if we stipulate unique existence in axiom (2).

One of the most important sheaves is given by the algebra of continuous functions
on X. In this case, the restriction is of course meant in the set-theoretic sense, and one
employs the notation f |U as explained above; the continuous functions defined on an open
set U are accordingly denoted by CX(U). It is a trivial exercise to check that U 7→ C(U)
is indeed a sheaf of algebras, written CX and known as the sheaf of continuous functions
(more compactly, the continuous sheaf) on X.

What is more important for our present purposes is the algebra of differentiable func-
tions on a manifold M , introduced in Subsection 1.3.1. Since we may view any open set
U ⊆M as a manifold it its own right (see Example 1.23), we can also introduce the algebra
Cr
M(U) of differentiable functions with domain U . Note that this is also consistent with the

topological case discussed before since we have CM(U) = C0
M(U) by Lemma 1.30. Using

again set-theoretic restriction, this yields a sheaf: First of all, it is clear that we have a
presheaf since we deal with actual functions. Then every Cr

M(U) is a subalgebra of CM(U),
so sheaf axiom (1) is inherited from CM(U). Finally, sheaf axiom (2) follows easily from
Lemma 1.32. Let us summarize this now.

1.36 Definition The sheaf of differentiable functions (more compactly, the differentiable
sheaf) on M , denoted by Cr

M , assigns to each open set U of M the algebra Cr
M(U) of

differentiable functions on U . In the special case M = Rn, we speak of the differentiable
Euclidean sheaf.

A subsheaf F ′ of the sheaf F is a sheaf that assigns to each open set U ⊆ X a subalgebra d
F ′(U) of the algebra F(U) such that the restriction homomorphisms of F ′ are induced by those of
F . Subsheaves typically arise by cutting down the ground space X to some subset X ′, regarded
as a topological space with the induced topology. Then the restriction sheaf of F to X ′ is written
as F|X′ and defined by

F|X′(U) = F(U)

for all U open in X ′. In other words, the restriction sheaf FX′ does exactly the same as F but
ignores any open sets outside of X ′.

A sheaf morphism between a sheaf F on the space X and a sheaf G on the space Y is given
by a continuous map ϕ : X → Y together with homomorphisms ϕV : G(V ) → F(ϕ−1V ) for open
sets V in Y such that

resU1,U2
◦ϕV2

= ϕV1
◦ resV1,V2

for open sets V1 ⊆ V2 in Y and U1 = ϕ−1V1 ⊆ U2 = ϕ−1V2 in X. If the sections of F and G are
all functions, the canonical choice for ϕV is the precomposition g ∈ G(V ) 7→ g ◦ ϕ ∈ F(ϕ−1V ),
and we can think of ϕ alone as a sheaf morphism. In this case, one only has to make sure that
g 7→ g ◦ ϕ carries G(V ) into F(ϕ−1V ).

As usual, a sheaf isomorphism is a sheaf morphism that has an inverse which is also a sheaf
morphism (if all sections are functions, this is just a homeomorphism ϕ : X → Y such that both ϕ
and ϕ−1 induce a sheaf morphism); in this case, we say that the sheaves F and G are isomorphic.
This notion can be localized: The sheaves F and G are called locally isomorphic if every point
has an open neighborhood U ⊆ X such that F|U is isomorphic to G|V for some open set V ⊆ Y .
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The special role of the differentiable Euclidean sheaf is that it models the differentiable sheaf
on any manifold: Locally, they always look the same.

1.37 Proposition The differentiable sheaf on M is locally isomorphic to the differentiable Eu-
clidean sheaf.

Proof. Given a point p ∈ M , we must find an open neighborhood U ⊆ M of p and an open set
V ⊆ Rn such that CrM |U is locally isomorphic to CrRn |V . Choosing any chart ϕ : U → V around
p, we show that ϕ gives the required sheaf isomorphism between CrM |U = CrU and CrRn |V = CrV .
As any other chart, ϕ is certainly a homeomorphism between the topological spaces U and V , so
it remains to check that ϕV0

: g 7→ g ◦ϕ maps CrRn(V0) into CrM (ϕ−1V0) for open sets V0 ⊆ V and
ϕU0

: f 7→ f ◦ ϕ−1 maps CrM (U0) into CrRn(ϕU0) for open sets U0 ⊆ U . But obviously {ϕ} is an
atlas for the submanifold U ⊆M while {1R} is an atlas on R, so Lemma 1.32 shows that a map
f : U0 → R is differentiable iff f ◦ ϕ−1 is. �

The nature of sheaf isomorphisms between subsheaves of the differentiable Euclidean sheaf is
particularly transparent: they are precisely the differentiable maps!

1.38 Lemma For any open sets A,B ⊆ Rn, a homeomorphism ϑ : A→ B is a sheaf isomorphism
between CrA and CrB iff ϑ is differentiable.

Proof. If ϑ : A → B is differentiable, the precompositions g 7→ g ◦ ϑ and f 7→ f ◦ ϑ−1 clearly
interchange differentiable functions defined on open subsets of B with those defined on open
subsets of A. So assume conversely that ϑ is a sheaf isomorphism between CrA and CrB . Then
δi ◦ ϑ : A → R is differentiable since each projection δi : B → R is differentiable for i = 1, . . . , n.
A vector-valued function is differentiable iff its components are, so ϑ : A → B ⊆ Rn is also
differentiable. �

The role of the Euclidean sheaf is that it models how differentiation works on a manifold M ,
so it can be expected that we may even characterize differentiable manifolds in this way—having
differentiable sheaves that look like the differentiable Euclidean sheaf.

1.39 Definition Given a topological space M , a subsheaf of CM is called a differentiable sheaf
on M if it is locally isomorphic to the differentiable Euclidean sheaf.

We will now reconstruct the differentiable structure on M . Before doing so, observe that we
have actually associated a differentiable sheaf Cr

D
to the differentiable structure D of M since we

have not used the topological conditions of Definition 1.25.

1.40 Proposition For a topological space M , every differentiable sheaf F on M induces a dif-
ferentiable structure Dr

F on M whose differentiable sheaf coincides with the original F .

Proof. Given a differentiable sheaf F , we define the differentiable structure Dr
F by choosing as

charts all those homeomorphisms between open sets U ⊆ M and open sets A ⊆ Rn that induce
sheaf isomorphisms between F|U and CrRn |A. Let us check that Dr

F is indeed a differentiable
structure on M . First of all, it is clear that the chart domains cover M because F is locally
isomorphic to CrRn . Next we have to ascertain differentiability of the transitions ψϕ−1 : A′ → B′
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between charts ϕ : U → A and ψ : V → B with overlaps A′ = ϕ(U∩V ), B′ = ψ(U∩V ) ⊆ Rn. But
ψϕ−1 is a sheaf isomorphism between CrA′ and CrB′ , so differentiability follows from Lemma 1.38.

We have now proved that Dr
F is a differentiable atlas, and it only remains to show that it is

maximal. So we must prove that any admissible chart ϕ : U → A induces a sheaf isomorphism
between F|U and CrRn |A. For any point p ∈ V there is a chart ϕ : U ′ → A′ around p with Up =
U∩U ′ 6= ∅. Write ϕp : Up → Ap and ψp : Up → A′

p with Ap = ψ(Up) ⊆ A and A′
p = ϕ(U ′

p) ⊆ A′ for
the corresponding restrictions. Since ϕ is compatible with ψ, the transition ϕpψ

−1
p : A′

p → Ap is
differentiable and thus a sheaf isomorphism between CrA′

p
and CrAp by Lemma 1.38. Being a chart,

ψ also induces a sheaf isomorphism, and its restriction ψp : Up → A′
p induces a sheaf isomorphism

between F|Up and CrA′

p
. Hence ϕp = ϕpψ

−1
p ◦ ψp : Up → Ap is a sheaf isomorphism between F|Up

and CrAp .

Take any differentiable map g : A0 → R on an open set A0 ⊆ A. Writing U0 = ϕ−1(A0), we
obtain a differentiable map g0 ◦ ϕp : U0 ∩ Up → R. Now the sets U0 ∩ Up form an open cover of
U0, while the g0 ◦ϕp clearly have common restrictions, so invoking sheaf axiom (2) for F|U yields
a section f0 ∈ F(U0). But this function f0 : U0 → R actually agrees with g0 ◦ ϕ since we have
f0(p) = g0(ϕp(p)) = g0(ϕ(p)) for any p ∈ U0. Hence we have proved g0 ◦ ϕ ∈ F(ϕ−1A0) for any
function g0 ∈ CrA(A0) defined on an open set A0 ⊆ A, so ϕ induces a sheaf morphism from F|U
to CrRn |A. In order to show that conversely ϕ−1 : A → U induces a sheaf morphism from CrRn |A
to F|U , we can use the same technique with ϕ−1

p in place of ϕp and sheaf axiom (2) for CrRn |A
instead of F|U .

This concludes the proof that D = Dr
F is indeed a differentiable structure. Next we make

sure that its differentiable sheaf Cr
D

actually coincides with the original differentiable sheaf F .
For an open set V ⊆ M , we have to prove that f : V → R is differentiable iff f ∈ F(V ). Again
we can choose a chart around any point p ∈ V and then restrict it to a small open neighborhood
Up within V . The restricted chart ϕp : Up → Ap is clearly admissible, hence it induces a sheaf
isomorphism between F|Up and CrRn |Ap .

Assume now f : V → R is differentiable. Then every local representative f ◦ ϕ−1
p : Ap → R

is also differentiable. Since ϕp induces a sheaf isomorphism between F|Up and CrRn |Ap , it maps
f ◦ ϕ−1

p ∈ CrRn(Ap) to fp = (f ◦ ϕ−1
p ) ◦ ϕp ∈ F(Up). Again it is clear that the Up form an open

cover of V and the fp agree on their common restrictions. Thus sheaf axiom (2) for F|V yields
f ∈ F(V ) by an argumentation similar to the one above.

Now assume f ∈ F(V ). By Lemma 1.32, it suffices to prove that the local representatives
f ◦ϕ−1

p are differentiable. But this follows immediately from f |Up ∈ F(Up) and the fact that ϕ−1
p

induces a sheaf morphism from CrRn |Ap to F|Up . �

It is clear how we can go in the other direction: A differentiable structure provides a differen-
tiable sheaf simply by taking all the differentiable functions—this is how it all started. But now
we have seen how to build up a differentiable structure if we are just given the sheaf, and the
question remains whether this leads us back to the original differentiable structure.

1.41 Proposition For any differentiable structure D on a topological space M , the corresponding
differentiable sheaf Cr

D
induces the same differentiable structure D.

Proof. We have to prove that a homeomorphisms ϕ between an open set U ⊆ M and an open
set A ⊆ Rn induces a sheaf isomorphism between Cr

D
|U and CrRn |A iff ϕ is a chart of D.
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Assume ϕ : U → A induces a sheaf isomorphism between Cr
D
|U and CrRn |A. For showing that

ϕ is a chart of D, it is sufficient to prove that it is differentiable. A vector-valued function is
differentiable iff all its components are, so we just have to show that δi◦ϕ : U → R is differentiable
for any i ∈ {1, . . . , n}. Clearly δi : Rn → R is differentiable, so we have δi ∈ CrRn(A). But this
implies δi ◦ϕ ∈ Cr

D
(U) since ϕ induces a sheaf morphism between Cr

D
|U and CrRn |A, which means

ϕ is indeed differentiable on its domain U .
Conversely, take a chart ϕ : U → A of D. In order to show that ϕ induces a sheaf morphism

between Cr
D
|U and CrRn |A, take a g ∈ CrRn(A). We have to show g◦ϕ ∈ Cr

D
(U), which means that

g◦ϕ : U → R is differentiable. Applying Lemma 1.32, it suffices to prove that g◦ϕ◦ψ−1
p : Up → R

is differentiable for every chart ψp : Up → Ap around a point p ∈ U with domain Up. But ϕ itself
is differentiable since it is a chart, hence also ϕ ◦ ψ−1

p by the definition of differentiable maps on
a manifold. Consequently, g ◦ϕ ◦ψ−1

p is differentiable as a composite of the differentiable maps g
and ϕ ◦ ψ−1

p . Finally we must show that ϕ−1 is a sheaf morphism between CrRn |A and Cr
D
|U , so

let f ∈ Cr
D

(U). Then f : U → R is a differentiable map, so its local representative f ◦ ϕ−1 must
also be differentiable, and therefore f ◦ ϕ−1 ∈ CrRn(A) as required. �

We can summarize our findings in the sense that differentiable structures and differentiable
sheaves are essentially the same; see Exercise 2 in [771]

1.42 Theorem For a topological space M , differentiable structures and differentiable sheaves are
in bijective correspondence.

Proof. Write Dr for the construction F 7→ Dr
F associating a differentiable structure to a given

differentiable sheaf, and correspondingly also Cr for the assignment D 7→ Cr
D

extracting the
differentiable sheaf from a given differentiable structure. If we denote the set of all differentiable
structures on M by Str(M) and the set of all differentiable sheaves on M by Shf(M), we can view
this as two function Dr : Str(M) → Shf(M) and Cr : Shf(M) → Str(M), and Proposition 1.40
states that Cr ◦Dr = 1Shf(M) while Proposition 1.41 gives Dr ◦ Cr = 1Str(M). Hence Cr and Dr

are inverse to each other, and the sets Str(M) and Shf(M) are indeed in bijective correspondence.
�

Of course, this also provides an alternative way of defining manifolds in the first place [1880],
emphasizing how “continuity structure” (the topology of M) is enriched by an additional “dif-
ferentiability structure” (the differentiable sheaf on M). Besides this, the sheaf definition also
makes certain relations with algebraic geometry more transparent [20].

Let us also remark that one can also define the notion of a differentiable map between man-
ifolds in a “sheaf fashion” [1880]; see also Exercise 3 in [771]. In the following proposition, we
assume the same conventions about dimensions and differentiability orders as in Subsection 1.3.1.

1.43 Proposition The differentiable maps between two manifolds M and N are exactly the sheaf
morphisms between CrM and CrN .

Proof. Assume first F : M → N is differentiable. For proving that F induces a sheaf morphism
between CrM and CrN , we take g ∈ CrN (V ) for an open set V ⊆ N and prove g ◦ F ∈ CrM (U)
with U = F−1(V ). Using Lemma 1.32, it is enough to prove that all local representatives
g ◦ F ◦ ψ−1 : Ũ → R are differentiable, where ψ : Ũ → Ã is a chart around an arbitrary point
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p ∈ U with domain Ũ ⊆ U . Since F is differentiable, we know that F ◦ ψ−1 : Ã → R is as well.
But then g ◦ F ◦ ψ−1 is differentiable since it is the composition of the differentiable maps g and
F ◦ ψ−1.

For the converse, assume F : M → N induces a sheaf morphism between CrM and CrN . For
proving F to be differentiable, we take arbitrary charts ϕ : U → A on M and ψ : V → B on N
with F (U) ⊆ V and show that the local representative ψ ◦ F ◦ ϕ−1 : A → B is differentiable. A
vector-valued function is differentiable iff all its components are, so it will be enough to prove that
δi ◦ψ ◦F ◦ϕ−1 : A→ R is differentiable for all i ∈ {1, . . . , n}. Note first that δi ◦ψ ◦F : U → R is
differentiable: Since δi ◦ ψ : V → R is differentiable, it belongs to CrN (V ), while precomposition
with F carries CrN (V ) into CrM (ϕ−1V ) because F is a sheaf morphism. Hence δi ◦ ψ ◦ F is
differentiable even on F−1(V ) ⊇ U . Finally, δi ◦ ψ ◦ F ◦ ϕ−1 : A → R is differentiable since it is
the composition of the differentiable map δi◦ψ◦F : U → R and the diffeomorphism ϕ−1 : A→ U .

�

We note finally that there is a sheaf analog of the patchwork construction described in Sub-

section 1.2.3: One may glue together sheaves given on an open cover of a common topological

space [2069]. It seems that this provides again a fully analogous sheaf treatment of general patch-

works in the following sense: The construction of Subsection 1.2.3 may also be carried out if

we are given submanifolds Ai ⊆ A of a given base manifold A, yielding a new “manifold” M

modelled on A rather than Rn. If A itself is an n-manifold, we may also regard the new manifold

M as an n-manifold by composing the charts of A with the A-charts of M . This means we can

construct an n-manifold by patching together various n-manifolds contained in a base manifold

(which was Rn in Subsection 1.2.3). Under the sheaf-manifold correspondence of Theorem 1.42,

this construction might correspond to the sheaf-gluing process as described in [2069]. u
1.3.3 Germs and Stalks

Assuming the same conventions as in Subsection 1.3.1, let f : U → N and g : V → N
be maps defined on open neighborhoods of a point p ∈ M . Given a point p ∈ M , we
put f ∼p g if there is an open neighborhood W ⊆ U ∩ V of p with f |W = g|W . It is
easily verified that ∼p is an equivalence relation on the set of all functions defined on a
neighborhood of p, and the resulting quotient forms a vector space, denoted by Gr

M,N(p)
and known as the differentiable stalk at p. Its elements are called differentiable germs at
p, and the canonical projection is written as

Cr(U,N) → Gr
M,N(p), f 7→ fp.

This construction is based only on the sheaf of differentiable functions from M to N ,
and one may in general construct the stalks [2062] for any given sheaf (not necessarily
consisting of actual functions with set-theoretic restriction) and for any category (not just
the category of algebras used here).

In the special case N = R, we obtain even an algebra that is briefly written as Gr
M(p)

or just Gr(p) if M is understood from the context. For such germs fp ∈ Gr(p), one can also
define evaluation by fp(p) = f(p). Since we will be working exclusively with such algebras,
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the objects Gr(p) will be referred to by the more descriptive name germ algebra instead of
the general term “stalk”.

At any given point p ∈M , a continuous map f : M → N with q = f(p) induces a germ
transport

f(p) : G(q) → G(p), ψq 7→ (ψ ◦ f)p;

note that f(p) is a homomorphism of algebras. Following [3610], we call f : M → N loaded
at p if the germ transport f(p) restricts to f(p) : G

r(q) → Gr(p), and a loaded map if it is
loaded at all points p ∈ M . A bijection f is called a loaded isomorphism if both f and
f−1 are loaded maps; consequently, f is a homeomorphism and the germ transports are
isomorphisms f(p) : G

r(q) → Gr(p).
Having differentiable structures on M and N , it turns out that differentiability can be

characterized in a germ-theoretical way.

1.44 Proposition Let f : M → N be a continuous map between two manifold M and
N . Then f is differentiable at p ∈ M iff it is loaded at p. Hence the differentiable maps
coincide with the loaded ones.

Proof. Assume first that f is differentiable at p with q = f(p) and consider the germ
transport f(p) : G(q) → G(p). Take any ψq ∈ Gr(q) and choose some representative ψ : V →R of ψq. Since f is differentiable at p and ψ at q = f(p), the composite ψf is also
differentiable at p, so we have indeed (ψf)p ∈ Gr(p).

Conversely, consider the germ transport f(p) : G
r(q) → Gr(p). Choosing suitable charts

ϕ : U → A around p and ψ : V → B around q, it is sufficient to prove that fψϕ = ψfϕ−1

is differentiable at ϕ(p). As usual, we employ the characterization of differentiable vector
functions; so let us show that δifψϕ is differentiable at ϕ(p) for an arbitrary i ∈ {1, . . . , n}.
Since (δiψ)q ∈ Gr(q), we may infer that (δiψf)p ∈ Gr(p). Hence we may choose some
neighborhood Ũ ⊆ U of p such that δiψf : Ũ → R is differentiable at p. Since we can
choose any charts ϕ : U → A and ψ : V → B as long as f(U) ⊆ V , we may as well take
U = Ũ and V = f(U). But then δiψfϕ is indeed differentiable at ϕ(p). �

In the previous Subsection 1.3.2, we have seen that the differentiable structure of a manifold d
is already determined by its differentiable sheaf, and we have characterized which sheaves are
suitable for this purpose. It turns out that we can even go down to the “infinitesimal” level of the
germs: Knowing the germ algebra Gr(p) at each point p ∈M , we can reconstruct the differentiable
sheaf and hence the differentiable structure of M , whose charts may also be characterized directly
in terms of the germ algebras. The crucial point here is (as earlier!) to go back to the Euclidean
space Rn as a reference object—now understood as a Cr manifold having its own germ algebras
Gr(x) for every coordinate node x ∈ Rn.
1.45 Proposition For any open set U ⊆M , we have

Cr(U) = {f ∈ C(U) | ∀p∈U fp ∈ Gr(p)}.

The charts of M are exactly the loaded isomorphisms between open sets of M and Rn.
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Proof. For f ∈ Cr(U), it is clear that each germ fp is a differentiable germ. So we take a
continuous function f : U → R with all germs fp ∈ Gr(p), and we must prove that f ∈ Cr(U).
Take a chart ϕ : U → A around p and let g ∈ Cr(V ) be a representative of fp with f |V = g for
a sufficiently small neighborhood V ⊆ U of p. Restricting the chart to ψ : V → B, we see that
g ◦ψ−1 = f ◦ψ−1 : B → R is differentiable at ϕ(p), so f is differentiable at p by definition. Since
p ∈ U was arbitrary, we see that f ∈ Cr(U) as claimed.

For proving the second statement of the proposition, one could probably evoke the correspon-
dence of Theorem 1.42 and apply a suitable adaption of a general theorem in [2063] connecting
sheaf morphisms and their induced operation on the stalks. As this seems to be rather awkward,
we prefer to give an independent proof here.

As noted earlier, the charts of a manifold M are exactly those homeomorphisms between open
sets of M and Rn which are differentiable. By Proposition 1.44, differentiability means being
loaded everywhere, so the charts are indeed loaded isomorphisms and vice versa. �

Since the germ algebras of a manifold suffice to build its differentiable sheaf (equivalently,
its differentiable structure), it is natural to characterize what we need to describe a manifold in
terms of germ algebras.

1.46 Definition A loaded space is a topological space M with an assignment G that associates
a germ algebra G(p) ⊆ G(p) with each point p ∈ M ; such an assignment G is then called a load
on the topological space M . If specifically M = Rn, the Euclidean load GrRn associates the germ
algebra GrRn(x), briefly Gr(x), to a point x ∈ Rn.

Any subset U of M is again a loaded space, carrying the induced topology as well as the
obvious induced load G|U . The above concepts about loads (maps loaded at a point, loaded maps,
loaded isomorphisms) generalize to loaded spaces.

A loaded chart is a homeomorphisms between open sets U ⊆ M and A ⊆ Rn that acts as
a loaded isomorphism between U and A, each carrying the induced load. (Here it is important
which load we associate to Rn and hence to A, this depending on the differentiability order r
inherent in the germ algebras Gr(x) making up the Euclidean load!) The crucial role of the
loaded charts is that they will allow us to characterize those loads that come from a differentiable
structure (or sheaf).

1.47 Definition A load on a topological space M is called a differentiable load on M if its loaded
charts cover M .

Any differentiable sheaf F on M provides a differentiable load GrF on M by associating

GrF (p) = {fp | f ∈ F(U) ∧ U ∋ p}

with a point p ∈M ; this works since Proposition 1.45 allows us to identify the charts of M with
the loaded charts of GrF . Let us next reassure ourselves that we can also go in the other direction.

1.48 Proposition For a topological space M , every differentiable load G on M induces a differ-
entiable sheaf CrG on M whose differentiable load coincides with the original G.
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Proof. Given a load G, we can proceed in a manner analogous to Proposition 1.45, defining

CrG(U) = {f ∈ C(U) | ∀p∈U fp ∈ G(p)}.

Let us first show that CrG is a differentiable sheaf on M . Obviously each CrG(U) is a subalgebra of
of C(U), and U 7→ CrG(U) is at least a presheaf since we are now dealing with actual functions and
set-theoretic restriction. In order to verify the sheaf axioms, consider an open cover (Ui | i ∈ I) of
U . Taking f, g ∈ CrG(U) with f |Ui = g|Ui for all i ∈ I, we obtain f = g since this is already true for
f, g ∈ C(U). For checking the other sheaf axiom, let fi ∈ CrG(Ui) such that fi|Ui∩Uj = fj|Ui∩Uj for
all i, j ∈ I. From the continuous sheaf U 7→ C(U), we obtain at least an f ∈ C(U) with f |Ui = fi
for all i ∈ I; it remains to prove that actually f ∈ CrG(U). Hence we must show fp ∈ G(p) for
an arbitrary p ∈ U . Since the Ui cover U , there is a Ui with p ∈ Ui and so fp = (fi)p. But
fi ∈ CrG(Ui) implies that (fi)p ∈ G(p), so the other sheaf axiom is also fulfilled.

Now we construct the differentiable load GrF induced by F = CrG , and we will show that
actually GrF = G. By definition, GrF (p) is the algebra of all germs fp coming from a continuous
function f on a neighborhood U of p such that fq ∈ G(q) for all q ∈ U . In particular, we have
then fp ∈ G(p), which immediately yields GrF (p) ⊆ G(p).

For the other inclusion, take an fp ∈ G(p) ⊆ Gp(M). Since fp ∈ Gp(M), there is a neighbor-
hood U of p and a function f ∈ C(U) such that fp is represented by f , incidentally justifying our
choice of notation for fp. At this point we make use of the fact that the load G is a differentiable
one, meaning the loaded charts of G cover M . Hence there is also a loaded chart defined on a
neighborhood of p, and we may assume that the above set U was chosen so small that the loaded
chart restricts to a smaller loaded chart ϕ : U → A. Then fp ∈ G(p) implies (f ◦ϕ−1)x ∈ Crx(Rn)
for x = ϕ(p), so f ◦ ϕ−1 restricts to a differentiable function defined on a neighborhood A′ ⊆ A
of x. Writing U ′ = ϕ−1(A′) ⊆ U for the corresponding neighborhood of p, we obtain a restricted
loaded chart ϕ : U ′ → A′. In order to prove fp ∈ GrF (p), it suffices now to show that fq ∈ G(q)
for all q ∈ U ′. But we know already that (f ◦ ϕ−1)y ∈ Cry(Rn) for all y ∈ A′ since f ◦ ϕ−1

is differentiable on A′. Therefore we obtain fq ∈ G(q) for the corresponding q = ϕ−1(y) by ϕ,
acting as a loaded isomorphism between G|U ′ and CrRn |A′ . This ends the proof of the inclusion
G(p) ⊆ GrF (p). �

1.49 Theorem For a topological space M , differentiable loads and differentiable sheaves are in
bijective correspondence.

Proof. Write Cr for the construction G 7→ CrG associating a differentiable sheaf to a given differ-
entiable load, as before

CrG(U) = {f ∈ C(U) | ∀p∈U fp ∈ G(U)}.

Correspondingly, we write also Gr for the assignment F 7→ GrF extracting the differentiable load
from a given differentiable sheaf, meaning

GrF (p) = {fp | f ∈ F(U) ∧ U ∋ p}.

If we denote the set of all differentiable loads on M by Grm(M) and the set of all differen-
tiable sheaves on M by Shf(M), we can view this as two function Cr : Grm(M) → Shf(M) and
Gr : Shf(M) → Grm(M). Proposition 1.48 states that Gr ◦Cr = 1Grm(M) while Proposition 1.45
gives Cr ◦ Gr = 1Shf(M). Hence Cr and Gr are inverse to each other, and the sets Shf(M) and
Grm(M) are indeed in bijective correspondence. �
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By Theorem 1.49, we have now a fourth possibility of defining a differentiable manifold (the

others being: atlas, patchwork, sheaf), with an appropriate characterization of differentiable maps

given in Proposition 1.43. This framework is used in [36] to build up the theory of differentiable

manifolds. There is one peculiar point in this approach that should however be noted: Even

though one can dispense with charts in specifying a differentiable manifold (all we need is to

specify at each point a subalgebra of the algebra of continuous germs), they are again needed

(under the guise of “loaded charts”) for characterizing which loads are differentiable—and hence

make up a differentiable manifold. u
We conclude this section by pointing out an important property of all except the ana-

lytic germs. So let M be a Cr manifold with r ∈ N ∪ {∞} and p ∈ M . Then every germ
in Gr

M(p) may be realized as fp coming from a global section f ∈ Cr(M). The proof [3615]
uses a partition of unity for constructing a bump function that connects a local represen-
tative smoothly (in as much as required by the order r) to the rest of M ; the proof fails for
r = ω since the bump function cannot be made analytic. As a consequence, one obtains
an obvious isomorphism of algebras

Gr(p) ∼= Cr(M)/Cr
[p](M),

where Cr
[p](M) is the ideal of all global sections vanishing around p.

1.4 Constructions on Manifolds

1.4.1 Submanifolds

Recall Definition 1.2 of an n-dimensional embedded submanifold M of Rm. We have
around every point a diffeomorphism—an ambient chart—that maps an open set of M to
an open set of Rn. From Example 1.19 we know that every diffeomorphism is a chart of the
canonical differentiable structure on Rm. This observation motivates the following notion
of an embedded submanifold of an arbitrary manifold.

1.50 Definition Let M be an m-dimensional manifold and N a subset of M . We say that
N is an n-dimensional embedded submanifold of M , if for every point p ∈ N there exists
a chart ϕ : U → A around p such that ϕ(U ∩N) = A∩Rn. We call m−n the codimension
of N .

To justify our terminology we have to show thatN is a manifold in its own right. Indeed,
we obtain an atlas for N analogously to the construction in Section 1.1.3, by restricting a
chart to the submanifold and then projecting to the first n coordinates.

Let ϕ : U → A be a chart as in the above definition (an “ambient chart” in our earlier
terminology). Let

Û = U ∩N and Â = π(A ∩Rn)

where π : Rm → Rn denotes the projection π(x1, . . . , xm) = (x1, . . . , xn). Then Â is open
in Rn and the map

ϕ̂ = π ◦ ϕ|Û : Û → Â
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is an (“abstract”) chart for N . Since an embedded submanifold is a subset of M it is
naturally a topological space with the induced topology. Analogously to Proposition 1.5
and 1.6, we obtain the following properties for the induced charts ϕ̂.

1.51 Proposition Every chart ϕ̂ is a C0 homeomorphism.

1.52 Proposition Every transition is a Cr diffeomorphism.

So the induced charts constitute an atlas for the embedded submanifold, and the cor-
responding chart topology is the induced topology by Propositions 1.11. Note moreover
that the induced topology is again Hausdorff and second-countable. It is also obvious that
embedded submanifolds of Rm as in Definition 1.2 are embedded submanifolds of Rm, the
latter seen as a manifold with the canonical differentiable structure. Open subsets of of a
manifold are 0-codimensional embedded submanifolds by Example 1.23.

We have the following characterization of differentiable maps for submanifolds.

1.53 Proposition Let M̂ be an embedded submanifold of M . Let f : N → M be a map
from a manifold to N such that f(N) ⊆ M̂ , and consider a point p ∈ N . Then f is
differentiable at p iff the induced map f̂ : N → M̂ is differentiable at p.

Proof. Let f be differentiable at p. Let ϕ : U → A be a chart around f(p) as in Definition
1.50. By Lemma 1.30, f is continuous at p, so there exists a neighborhood Ṽ of p with
f(Ṽ ) ⊆ U . We can choose a chart domain V ⊆ Ṽ with the corresponding chart ψ : V → B
by Proposition 1.17, and since f(N) ⊆ M̂ we also have f(V ) ⊆ U ∩ M̂ . The local
representative fϕψ is differentiable around ψ(p), and therefore also the local representative

f̂ϕ̂ψ = π ◦ ϕfψ−1.

for the induced chart ϕ̂ is differentiable since π is Cω. So the induced map f̂ is indeed
differentiable at p.

Suppose conversely that f̂ is differentiable at p. Let ϕ : U → A be a chart around f(p)
as in Definition 1.50 and ϕ̂ the corresponding induced chart. Since f̂ is continuous at p,
we can find as before a chart ψ : V → B around p such that f(V ) ⊆ U ∩ M̂ . The local
representative f̂ϕ̂ψ is differentiable around ψ(p), and therefore also the local representative

fϕψ = ι ◦ ϕ̂f̂ψ−1.

for the chart ϕ is differentiable since the inclusion ι(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0) is
Cω. So the map f is differentiable at p, as claimed. �

Several authors consider also a more general notion of submanifolds often called im-
mersed submanifolds, see for example [779], [46234] and [275]. We will discuss immersions
and immersed submanifolds in a later section.
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1.4.2 Products and Sums of Manifolds

Given an m-manifold M and and n-manifold N , we can canonically construct a differen-
tiable structure on the cartesian product M×N such that it becomes an (m+n)-manifold.

Let A = (ϕi | i ∈ I) and B = (ψj | j ∈ J) be atlases on M and N , respectively. Then
one sees that

A × B = (ϕi × ψj | i ∈ I, j ∈ J)

is an (m + n)-dimensional atlas on M × N . The corresponding chart topology is the
product topology, hence it is again Hausdorff and second-countable. We call M ×N with
the differentiable structure (A × B)max the product manifold of M and N .

1.54 Example A classical example of a product manifold is the torus

S1 × S1 ⊆ R2 ×R2.

To illustrate the torus, we usually use a diffeomorphic embedded submanifold in R3 that
looks like a doughnut.

We know that a map f = (f1, f2) : U → Rm × Rn for some open subset U ⊆ Rl is
differentiable iff its components f1 and f2 are differentiable. Hence we obtain the following
characterization of differentiable maps for product manifolds.

1.55 Proposition Let L,M,N be manifolds and f = (f1, f2) : L → M × N . Then f is
differentiable at p iff its components f1 and f2 are differentiable at p.

Let now M and N be two n-dimensional manifolds. Then we can canonically define an
n-dimensional atlas on the disjoint union M+N by taking the union A+B (automatically
disjoint) of two atlases for M and N , respectively. This is indeed an atlas since we do not
have any additional transition between charts. The corresponding chart topology is the
sum topology, hence it is again Hausdorff and second-countable. We call M +N with the
differentiable structure (A + B)max the sum of the manifolds M and N .

Note that we can even construct the sum of countably many manifolds, but not un-
countably many since we want to have second countability. Obviously, we obtain an anal-
ogous characterization of differentiable maps for the sum of manifolds with the canonical
inclusions.



Chapter 2

The Tangent Space

Differential calculus on manifolds begins with the tangent space: If we want to approximate
a differentiable map between two manifolds near a given point by a linear map (and this is
what the calculus is all about!), we need a vector space “at” the given point: the tangent
space. But how can we create a vector space structure on an abstract manifold? Obviously
we cannot add their points—unless the manifold is embedded in some Euclidean space.
But this is just what we wanted to avoid in the present setting. Hence we must seek other
means of setting up a vector space structure at a point.

2.1 Cotangent and Tangent Vectors

2.1.1 Abstract Setting

We fix an n-dimensional manifold M of class Cr with r ≥ 1, and choose a point p ∈ M .
Let D be the differentiable structure of M . The variables i, j range over {1, . . . , n}.

We will introduce tangent and cotangent vectors as geometrical objects, with special
emphasis on their duality. As a visual expression of this co/contra duality, portions of the
text will be layed out in two columns.

We write F (p) for the set of function
germs through p, consisting of all C1

germs of maps f : M → R. From now
on, the variable f and its embellishments
range over F (p).

We write C(p) for the set of curve germs
through p, consisting of all C1 germs of
maps c : R → M with c(0) = p. From
now on, the variable c and its embellish-
ments range over C(p).

We can measure the rate of change of a function germ f along a curve germ c at the
point p by the directional derivative

〈f |c〉 = (f ◦ c)′(0).

We simply call 〈f |c〉 the rate of f along c. The notation 〈|〉 should remind of an inner
product—and we shall soon understand why!

43
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We call f and f̄ cotangent to each other,
denoted by f ∼ f̄ , if

〈f |c〉 = 〈f̄ |c〉

for all c. If in particular f ∼ 0, we call
the function germ f stationary.
The cotangent space is given by T ∗

pM =
F (p)/∼, whose elements are accordingly
known as the cotangent vectors (or the
“covectors”) at p. The variables d, e and
their embellishments range over T ∗

p .

We call c and c̄ tangent to each other,
denoted by c ∼ c̄, if

〈f |c〉 = 〈f |c̄〉

for all f . If in particular c ∼ 0, we call
the curve germ c singular.
The tangent space is given by TpM =
C(p)/∼, whose elements are accordingly
known as the tangent vectors (or the
“vectors”) at p. The variables v, w and
their embellishments range over Tp.

Since we have fixed the manifold M from the outset, we will subsequently abbreviate
T ∗
pM and TpM by T ∗

p and Tp, respectively. Note that our terminology and notation antici-
pates already some results that we will prove presently: Both T ∗

p and Tp are n-dimensional
vector spaces, and T ∗

p is indeed dual to Tp.
In order to establish these dimensions, we will have to go back to the defining property

of the manifold: Locally, it must be diffeomorphic to Rn via any local chart. Hence it
is reasonable to expect that we can reduce the “testing germs” (function germs / curve
germs) in the equivalence relation (cotangency / tangency) to those coming from a single
local chart (coordinate functions / coordinate lines). In order to make for a smoother
notation, we extend the bracket to centered charts by writing respectively

〈f |ϕ−1〉 = (f ◦ ϕ−1)′(0) = 〈f |ϕi〉 δ
i ∈ Rn,

〈ϕ|c〉 = (ϕ ◦ c)′(0) = 〈ϕi|c〉 δi ∈ Rn

for the rate of a chart (meaning its coordinate functions) along a curve and the rate of a
function along a parametrization (meaning its coordinate curves).

2.1 Lemma We have f ∼ f̄ iff 〈f |ϕ−1〉 = 〈f̄ |ϕ−1〉 and c ∼ c̄ iff 〈ϕ|c〉 = 〈ϕ|c̄〉, where ϕ is
some chart centered at p.

Proof. The direction from left to right is obvious. For the other direction, we can compute
〈f |c〉 as

(f ◦ c)′(0) = ((f ◦ ϕ−1) ◦ (ϕ ◦ c))′(0) = (f ◦ ϕ−1)′(0) (ϕ ◦ c)′(0) = 〈f |ϕ−1〉 〈ϕ|c〉,

which obviously coincides with 〈f |c̄〉 or 〈f̄ |c〉 whenever either 〈f |ϕ−1〉 = 〈f̄ |ϕ−1〉 or 〈ϕ|c〉 =
〈ϕ|c̄〉, respectively. �

In order to address T ∗
p and Tp as vector spaces, we have to make sure that there is a

linear structure on them. For T ∗
p , this is obviously the case already, and for Tp, we define

the linear structure by putting

λp[cp]∼ + λpp[cpp]∼ = {c ∈ C(p) | ∀f∈F (p) 〈f |c〉 = λp 〈f |cp〉 + λpp 〈f |cpp〉} (2.1)
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for all λp, λpp ∈ R and cp, cpp ∈ C(p). Note that the linear structure is well-defined since the
result is indeed an equivalence class under tangency, and the vector-space axioms are easily
verified. Hence we can indeed view both Tp and T ∗

p as vector spaces. Moreover, we can see
that the rate factors through these spaces as a bilinear form

〈|〉 : T ∗
p × Tp → R,

([f ]∼, [c]∼) 7→ 〈f |c〉.

Note also that 〈|〉 : T ∗
p ×Tp → R is non-degenerate, due to the definition of cotangency and

tangency.

2.2 Lemma For any chart ϕ centered at p, we have 〈ϕi|ϕj〉 = δij.

Proof. We compute

〈ϕi|ϕj〉 = (ϕi ◦ ϕj)
′(0) = ((δi ◦ ϕ) ◦ (ϕ−1 ◦ δj))

′(0) = (δi ◦ δj)
′(0) = δji ,

the latter identity since δi ◦ δj : R→ R acts by t 7→ δji t. �

Our introduction of the cotangent and tangent space follows along the lines of [35], but it can d
actually be done in a general construction similar to [32145,523] and in the spirit of [431]. We will
briefly outline this idea because it gives us more insight into the symmetry between the cotangent
and tangent space. Suppose we have a “bisurjective” function 〈|〉 : F × C → K with values in a
field K, meaning 〈f | 〉 and 〈 |c〉 are surjective for all nonstationary f and nonsingular c. Here
one defines the relations of cotangency and tangency in a completely analogous manner, and f
is again called stationary if f ∼ 0 and c singular if c ∼ 0. One can then proceed to impose a
K-vector space structure on F̃ = F/∼ and C̃ = C/∼ by defining linear combinations on C̃ as we
did in (2.1), and dually also on F̃ . This makes 〈|〉 a non-degenerate bilinear form on F̃ × C̃.

Bisurjectivity can be guaranteed by having a scalar multiplication on either C or F . Taking
F for definiteness, this means we have a map · : K × F → K such that 〈λ · f |c〉 = λ 〈f |c〉 for
all λ ∈ K and (f, c) ∈ F × C. This is what we used in our example where we had F = F (p),
C = C(p) and K = R.

But in general, one will not obtain the dualities F̃ ∼= C̃∗ and C̃ ∼= F̃ ∗ from this bilinear
form—in fact, this happens iff we know that one (and therefore also the other) of these spaces is
finite-dimensional. Banach manifolds, as treated e.g. in [31] and [11], are a case in point here:
The tangent and cotangent space (in the sense of our definition) are no longer dual to each other
since each of them is of the same (small) dimension as the underlying Banach space playing the
role of Rn. Hence there are now four spaces involved: tangent, cotangent, tangent dual (usually
called “cotangent”!), and cotangent dual.

In the finite-dimensional case of our cotangent and tangent spaces, we have a special situation
that introduces an apparent asymmetry into the construction: There is already a linear structure
on F , but not on C. But when we look at the geometric picture and our actual definitions, we
realize that the linear structure on R is never really used—neither for curves c : R→ M nor for
functions f : M → R. The crucial point is just that the rate of f along c produces an element ofR; and it is from them that we obtain linear structures on the equivalence classes (and we could
introduce them in the symmetric fashion of the abstract construction sketched above).
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In fact, we could consider generalized curves parametrized by an arbitrary set and generalized

functions with values in an arbitrary set (think of replacing R by a suitable algebraic curve); all

we need is a way of measuring their rate of change! Another possibility would be to keep the

curves and functions as they are, defining a generalized rate e.g. by 〈f |g〉 = (f ◦ Ψ ◦ c)′(0) with

an arbitrary differentiable map Ψ: M →M fixing p. u
2.1.2 Representation through Components

In order to arrive at the desired dimension and duality results, we will set up an iso-
morphism between the (co)tangent space and the real vector space. This isomorphism
will depend on the choice of any chart ϕ centered at p; it maps the abstract (co)tangent
vectors to their components in the chosen coordinate system. Note that the component
isomorphisms below are well-defined because of Lemma 2.1.

We define cotangent component isomor-
phism by

(|ϕ : T ∗
p → Rn,

[f ]∼ 7→ 〈f |ϕ−1〉

and the cotangent representation isomor-
phism by

〈|ϕ : Rn → T ∗
p ,

a 7→ [a ◦ ϕ]∼.

As usual, we view the rows a ∈ Rn here
as linear functions Rn → R.

We define the tangent component iso-
morphism by

|)ϕ : Tp → Rn,

[c]∼ 7→ 〈ϕ|c〉

and the tangent representation isomor-
phism by

|〉ϕ : Rn → Tp,

h 7→ [ϕ−1 ◦ h]∼.

As usual, we view the columns h ∈ Rn

here as linear curves R→ Rn.

As mentioned before, we can also write the component isomorphisms in the more explicit
forms

[f ]∼ 7→ (〈f |ϕ1〉, . . . , 〈f |ϕn〉) and [c]∼ 7→ (〈ϕ1|c〉, . . . , 〈ϕn|c〉)⊤. (2.2)

Our immediate aim is now to put the component isomorphisms into use: We prove that
they establish the desired isomorphism between the (co)tangent spaces and their Euclidean
counterparts (thus justifying their “isomorphism” labels).

2.3 Proposition The component and representation isomorphisms are inverse to each
other as linear maps. Hence T ∗

p
∼= Rn and Tp ∼= Rn, implying in particular dim T ∗

p =
dimTp = n.

Proof. On the vector space F (p), we can see the cotangency relation as a linear congruence
that corresponds to the subspace of stationary germs

Sp = {f | ∀c∈C(p) 〈f |c〉 = 0} = {f | 〈f |ϕ−1〉},
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where the latter identity follows from Lemma 2.1. Observe now that the gradient operator

γϕ : F (p) → Rn, f 7→ 〈f |ϕ−1〉

is as a linear map that factors through the cotangency projection to (|ϕ : T ∗
p → Rn. Since

T ∗
p = F (p)/∼ = F (p)/Sp, the homomorphism theorem implies that (|ϕ is a linear map,

while Lemma 2.2 tells us that γϕ and hence (|ϕ is surjective. Moreover, (|ϕ is injective
since Ker γϕ = Sp. Hence (|ϕ is indeed a linear isomorphism.

Let us now check that 〈|ϕ is the inverse of (|ϕ, which immediately guarantees that 〈|ϕ
is also a linear map (and thus a linear isomorphism as claimed). For a linear isomorphism,
any left or right inverse is automatically its (unique) inverse. So it suffices to check that
〈|ϕ is, say, a left inverse of (|ϕ. For d = [f ]∼ ∈ T ∗

p we obtain

〈(d|ϕ|ϕ = 〈γϕ(f)|ϕ = [γϕ(f) ◦ ϕ]∼ = [f ]∼ = d

if we can show f ∼ γϕ(f) ◦ ϕ. Using Lemma 2.1, this is equivalent to

γϕ(f) = ((γϕ(f) ◦ ϕ) ◦ ϕ−1)′(0),

which is evidently true since the right-hand side simplifies to γϕ(f)′(0) = γϕ(f).
The tangency relation is defined on the set C(p), and it is obviously compatible with

the tangent operator
τϕ : C(p) → R, c 7→ 〈ϕ|c〉

Hence τϕ factors through the tangency projection to the map |)ϕ : Tp → R. We must now
check that the map |)ϕ is linear on Tp = C(p)/∼ with respect to the linear structure we
imposed there. Taking cp, cpp ∈ C(p) and λp, λpp ∈ R, we pick out any representative c ∈ C(p)
of the equivalence class [c]∼ = λp [cp]∼ + λpp [cpp]∼, computing τϕ(c) = (ϕ ◦ c)′(0) as






〈ϕ1|c〉
...

〈ϕn|c〉




 =






λp 〈ϕ1|cp〉 + λpp 〈ϕ1|cpp〉
...

λp 〈ϕn|cp〉 + λpp 〈ϕn|cpp〉




 = λp






〈ϕ1|cp〉
...

〈ϕn|cp〉




 + λpp






〈ϕ1|cpp〉
...

〈ϕn|cpp〉




 ,

where the first equality uses the linear structure on Tp and the second the one on Rn.
Using now |[c]∼)ϕ = τϕ(c) and the analogous relations for cp and cpp, this yields indeed
|[c]∼)ϕ = λp |[cp]∼)ϕ + λpp |[cpp]∼)ϕ for [c]∼ = λp [cp]∼ + λpp [cpp]∼, so |)ϕ : Tp → Rn is a linear
map. Since τϕ(c) = (〈ϕ1|c〉, . . . , 〈ϕn|c〉)⊤, we see from Lemma 2.2 that τϕ and hence |)ϕ is
surjective. It is injective and thus a linear isomorphism because the equivalence kernel is
just the tangency relation.

It remains to be proved now that |)ϕ has |〉ϕ as its, say, left inverse. For v = [c]∼ ∈ Tp
we have

||v)ϕ〉ϕ = |τϕ(c)〉ϕ = [ϕ−1 ◦ τϕ(c)]∼ = [c]∼ = v,

provided we can prove c ∼ ϕ−1 ◦ τϕ(c). Again employing Lemma 2.1, this is equivalent to

(ϕ ◦ c)′(0) = (ϕ ◦ (ϕ−1 ◦ τϕ(c)))
′(0)

which is satisfied since the right-hand side simplifies to τϕ(c)
′(0) = τϕ(c). �
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We can now prove the announced duality of cotangent and tangent space (thus justifying
the terminology).

2.4 Proposition The cotangent and tangent spaces form a dual pair of vector spaces
(T ∗

p , 〈|〉, Tp), hence we will identify (Tp)
∗ with T ∗

p , and (T ∗
p )∗ with Tp.

Proof. Each cotangent vector d ∈ T ∗
p determines a map d∗ : Tp → R given by v 7→ 〈d|v〉;

since this map is obviously linear, we have indeed d∗ ∈ (Tp)
∗. Analogously, a tangent vector

v ∈ Tp determines a map v∗ : T ∗
p → R given by d 7→ 〈d|v〉; this map is again linear, so we

have also v∗ ∈ (T ∗
p )∗.

The maps d 7→ d∗ and v 7→ v∗ are obviously linear, and the construction of Tp and
T ∗
p ensures their injectivity. Injective linear maps between equidimensional vector spaces

are automatically surjective (alternatively we could apply Lemma 2.2), so we have indeed
(Tp)

∗ ∼= T ∗
p and (T ∗

p )∗ ∼= Tp. �

For each centered chart ϕ around p, an “abstract” tangent vector v ∈ Tp is now rep-
resented by the “concrete” component vector h = |v)ϕ ∈ Rn. Choosing another chart ψ
centered at p, we get a different component vector k = |v)ψ ∈ Rn. There must be a tight
relationship between these two component vectors, though, since we have the composite
isomorphism Rn |〉ϕ

 Tp
|)ψ
 Rn (2.3)

effecting h 7→ k. Similarly, if a cotangent vector d ∈ T ∗
p is represented by component forms

a = (d|ϕ ∈ Rn and b = (d|ψ ∈ Rn, the composite isomorphismRn
〈|ϕ
 T ∗

p

(|ψ
 Rn (2.4)

realizes a 7→ b. It turns out that we can characterize these isomorphisms without recourse
to the component and representation isomorphisms (recall that an asterisk on a linear
map f : Rn → Rn denotes its dual f ∗ : Rn → Rn which in canonical bases operates by
multiplying vectors from the left instead of the right).

2.5 Proposition The linear isomorphisms of (2.3) and (2.4) are given by the vector dif-
ferential d0 1ψϕ : Rn → Rn and codifferential d∗0 1ϕψ : Rn → Rn, respectively.

Proof. For h ∈ Rn, we compute

||h〉ϕ)ψ = |[ϕ−1h]∼)ψ = (ψ ◦ ϕ−1h)′(0) = (ψϕ−1 ◦ h)′(0) = (ψϕ−1)′(0) h′(0),

and this is indeed the same as (d0 1ψϕ) h, written in canonical coordinates of Rn, since
ψϕ−1 = 1ψϕ and h′(0) = h. With a ∈ Rn, we perform a similar computation

(〈h|ϕ|ψ = ([aϕ]∼|ψ = (aϕ ◦ ψ−1)′(0) = (a ◦ ϕψ−1)′(0) = a′(0) (ϕψ−1)′(0),

which equals this time (d∗0 1ϕψ) a, written in the canonical coordinates of Rn, since ϕψ−1 =
1ϕψ and a′(0) = a. �
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Note that Proposition 2.5 is very useful since it allows us to change between different
component vectors without “actually knowing” the abstract cotangent/tangent spaces:
Given the components in one coordinate system, we can compute its components in any
other coordinate system by virtue of the transition Jacobian. This is crucial because
we never “actually know” the abstract spaces (whose elements are equivalence classes
consisting of infinitely many germs)! In this sense, the component isomorphisms translate
the abstract entities of the original definition (sometimes called the “geometric” view) into
a simple isomorphic object that is amenable to practical computations (also called the
“physical” view since computations are crucial in physical applications).

We should understand, however, that cotangent and tangent vectors are not simply
elements of Rn and Rn, respectively. Of course, if we are only speaking about “vectors”
(meaning elements of an algebraic structure that satisfies the vector space axioms), there
is nothing more to it, and even the distinction between Rn and Rn disappears. But a
cotangent/tangent vector of a certain manifold M at a certain point p ∈ M is more
than that: it must behave in the way function/curve germs behave (of course modulo
cotangency/tangency). And exactly how they must behave is specified in Proposition 2.5;
we will come back to this question at the end of the next subsection.

2.1.3 Co- and Contravariance

In order to understand this behavior in some depth, let us restate the transformation
formulae of Proposition 2.5 in a more classical notation: In this subsection we will use x, y, z
for coordinate systems (which is the same as “charts” in our earlier terminology). Writing
∂x̄/∂x = 1′x̄x(0) for the transition Jacobian from x to x̄, its inverse ∂x/∂x̄ = 1′xx̄(0) is
transition Jacobian from x̄ to x by (1.1), and the transformation formulae can be expressed
by

(d|x̄ = (d|x
∂x

∂x̄
and |v)x̄ =

∂x̄

∂x
|v)x. (2.5)

We may view these formulae as giving a generalization of the Linear Algebra notion of base
change, as explained in Subsection 2.2.3.

In the so-called Ricci calculus, relations of the form (2.5) are written entirely in compo-
nents with lower/upper indices for extracting covector/vector components (recall that we
think of lower/upper indices as ranging along rows/columns). As mentioned in Chapter 0,
summation over diagonal index pairs is always implicit (“Einstein summation convention”)
in order to avoid excessive summation signs. In order to further simplify our notation, we
leave out the component isomorphisms when using indices. This is harmless since dj makes
sense only if we think of d as (d|x ∈ Rn and vj only if we now interpret v as |v)x ∈ Rn. Of
course, this notation loses the information about the coordinate systems in use, but this is
usually solved by embellishments on d and v: If we use charts x and x̄, the corresponding
components would be called (dj) and (d̄i) for a cotangent vector d or (vj) and (v̄i) for
a tangent vector v. With these conventions, the transformation laws can succinctly be
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written as

d̄i =
∂xj

∂x̄i
dj and v̄i =

∂x̄i

∂xj
vj, (2.6)

all indices (both free and bound) ranging over {1, . . . , n}. This index convention is another
important standard ingredient of the Ricci calculus. Note also that in the transition Jaco-
bian, the upper index appears in the numerator and the lower index in the denominator,
just as one would expect.

Another crucial aspect is the expansion of (co)tangent vectors in the certain natural
bases, called (co)frames.

The coframe for a chart x around p is
given by the n cotangent vectors

[x1]∼, . . . , [x
n]∼ ∈ T ∗

p ,

abbreviated as dx1, . . . , dxn.

The frame for a chart x around p is given
by the n tangent vectors

[x1]∼, . . . , [xn]∼ ∈ Tp,

abbreviated as dx1, . . . , dxn.

The significance of the (co)frames is that they are all that one needs: Having chosen
a fixed coordinate system x, they result from the cotangent representation isomorphism
〈|x : Rn → T ∗

p as δi 7→ dxi and from the tangent representation isomorphism |〉x : Rn → Tp
as δi 7→ dxi. Of course, one could choose different (co)bases in T ∗

p and Tp. But somehow
this would be pointless because any such “unnatural” basis corresponds to a (co)frame for a
different coordinate system x̄, and it is much more convenient to work with this (co)frame;
below we will derive the corresponding transformation laws. In view of these facts, we will
henceforth use only (co)frames.

The explicit component formulae (2.2) can now be restated in terms of (co)frames: For
a cotangent vector d = [f ]∼ ∈ T ∗

p and tangent vector v = [c]∼ ∈ Tp, the components can
be extracted by

di = 〈f |xi〉 = 〈d|dxi〉 and vi = 〈xi|c〉 = 〈dxi|v〉 (2.7)

since the rate factors through the canonical projections F (p) → T ∗
p and C(p) → Tp.

From Lemma 2.2 we infer immediately that 〈dxi|dxj〉 = δij , which implies that both the
dxi and the dxj are linearly independent. In order to see that they also span the respective
spaces (and hence constitute mutually dual bases for the cotangent/tangent space), we
claim the expansions

d = di dx
i and v = vi dxi, (2.8)

now making use of the conventions explained above.

2.6 Proposition For any cotangent vector d ∈ T ∗
p and tangent vector v ∈ Tp we have the

expansions (2.8) and the formula

〈d|v〉 = (d|x |v)x = di v
i (2.9)

for the rate of d along v.
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Proof. Choose arbitrary representatives to write d = [f ]∼ and v = [c]∼. We start by
proving the formula (2.9) for the rate

〈d|v〉 = 〈f |c〉 = (f ◦ c)′(0) = (fx−1 ◦ xc)′(0) = (fx−1)′(0) (xc)′(0) = (d|x|v)x,

unfolding the definition of the component isomorphism in the last step. The second equality
of (2.9) is just a restatement using the component convention introduced above. Note also
that we can write the rate as (d| |v) if we omit reference to the chart x. Running together
the components, this could then be written as (d|v) and parsed as the canonical scalar
product of (d1, . . . , dn) and (v1, . . . , vn)⊤.

In order to prove the identities (2.8), it suffices to verify the relations f ∼ di x
i and

c ∼ vi xi. Choosing an arbitrary c̄ ∈ C(p) with associated v̄ = [c̄]∼ ∈ Tp, we compute

〈f |c̄〉 = 〈d|v̄〉 = di v̄
i = 〈di x

i|c̄〉

by the explicit component formulae (2.7). Dually, we take f̄ ∈ F (p) with d̄ = [f̄ ]∼ ∈ T ∗
p

to compute
〈f̄ |c〉 = 〈d̄|v〉 = d̄iv

i = 〈f̄ |vixi〉,

again using (2.7). �

Using frame and coframe, we can also express the transition Jacobian ∂x̄/∂x = 1′x̄x(0) =
(x̄x−1)′(0) for the coordinate change from x to x̄. Its i-th row is obviously (x̄ix−1)′(0) =
(dx̄i|x by the definition of the cotangent component map. Using the explicit formulae (2.2),
this yields

∂x̄

∂x
=






〈x̄1|x1〉 · · · 〈x̄1|xn〉
...

. . .
...

〈x̄n|x1〉 · · · 〈x̄n|xn〉






for the Jacobian matrix and ∂x̄i/∂xj = 〈x̄i|xj〉 for its generic entry.
Having bases in T ∗

p and Tp, we can also ask how they change when we pass from one
coordinate system to another. We have already derived the transformation formulae (2.5)
for the components, and from Linear Algebra we would expect those for the basis change
to be contragredient to them. This is indeed the case as we shall see now.

2.7 Proposition Passing from a coordinate system x to x̄, the coframe dx1, . . . , dxn and
the frame dx1, . . . , dxn change to dx̄1, . . . , dx̄n and dx̄1, . . . , dx̄n such that the transforma-
tion laws

dx̄i =
∂x̄i

∂xj
dxj and dx̄i =

∂xj

∂x̄i
dxj (2.10)

are satisfied.

Proof. For expressing “new” coframe vectors dx̄i and frame vectors dx̄i in terms of their
“old” cognates dxi and dxi, we expand them in the old (co)frame, computing the corre-
sponding component vectors according to formula (2.5). The latter are given by

|dx̄i)x = |dxi)x
∂x̄

∂x
and (dx̄i|x =

∂x

∂x̄
(dxi|x.
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Since |dxi)x = δi and (dxi|x = δi, this yields

(dx̄i)j =
∂x̄i

∂xj
and (dx̄i)

j =
∂xj

∂x̄i

for the components (all referring to the coordinate system x). Inserting them now into the
expansions, we obtain the claimed relations

dx̄i = (dx̄i)j dx
j =

∂x̄i

∂xj
dxj and dx̄i = (dx̄i)

j dxj =
∂xj

∂x̄i
dxj

for the new (co)frame vectors. �

The formulae (2.10) for the basis change are clearly contragredient to the formulae (2.6)
describing the coefficient transformation. In detail this means the following: The matrix de-
scribing the transformation of the coframe is contragredient (i.e. inverse-transpose) to the
matrix describing the corresponding coefficient transformation for cotangent vectors, and
also the transformation matrix of the frame is contragredient to the coefficient transforma-
tion matrix for tangent vectors. The combined effect of contragredience is that cotangent
and tangent vectors remain invariant under all coordinate transformations (which we could
have used as an alternative starting point for deriving the formulae of basis change). From
the abstract point of view, this is of course trivial; let us nevertheless see how this manifests
in components: Taking a cotangent vector d = di dx

i ∈ T ∗
p and passing to a new coordinate

system x̄, we regain the original cotangent vector since

d̄i dx̄
i =

(∂xj

∂x̄i
dj

)(∂x̄i

∂xl
dxl

)

= δjl dj dx
l = dj dx

j = d;

similarly, a tangent vector v = vi dxi ∈ Tp is replicated as we see from

v̄i dx̄i =
(∂x̄i

∂xj
vj

)(∂xl

∂x̄i
dxl

)

= δlj v
j dxl = vj dxj = v.

This shows how the contragredient transformation of the frames and coefficients combines
to keep cotangent/tangent vectors invariant.

The classification of the transformation laws seems to create considerable confusion as
one can see from [52]. We will try to clarify the issue from a geometric point of view.
The key to understanding is to consider a uniform expansion by a factor κ > 1. This
can be expressed by passing from the coordinate system x to a new coordinate system x̄
such that x(p) = κ x̄(p). (Note that in x̄ all coordinates are smaller by κ−1, thus making
everything appear larger by κ. In other words, measuring in smaller units leads to larger
results!) The transition Jacobians are then given by ∂x/∂x̄ = κ and ∂x̄/∂x = κ−1. Hence
everything that transforms with ∂x/∂x̄, expands along with the coordinate space: its scale
varies in harmony or covariantly. Everything that transforms with ∂x̄/∂x = κ−1, however,
contracts against the coordinate space: its scale varies in opposition or contravariantly. We
must now distinguish three different object types in discussing “how they change under
coordinate transformations”:
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Vectors: As we have seen, cotangent and tangent vectors are invariant. This is just
the point in defining “geometric objects” in the first place: they are independent
of any coordinate systems, and that is why we have already introduced them in a
coordinate-free manner. (In another terminology, such objects—along with points,
curves, functions and the like—are called intrinsic, as opposed to extrinsic ones like
charts and everything coming through them—in particular, bases and components.)

Bases: From Proposition 2.7 we can see that the cobasis transforms contravariantly,
whereas the basis transforms covariantly. This should be geometrically obvious:
Expanding the space, the basis vectors grow along with it, but the cobasis vectors
(think of evenly spaced level planes) shrink.

Components: Equation (2.6) tells us that the cotangent components transform covari-
antly, while the tangent components transform contravariantly. We can understand
this geometrically as follows: Since the basis vectors are now bigger, fewer are needed
for building up a composite vector, but more level planes fit in a reference volume.

We can now see the source of confusion in the terminology: Tangent vectors are some-
times called contravariant (because their components are) but at other times covariant
(since their bases are), while they are in fact invariant! In the same spirit, cotangent
vectors are frequently called covariant vectors (after their components) and at times also
contravariant (like their cobases), but they are of course again invariant! Therefore we do
well to remain with the terminology “cotangent vector” versus “tangent vector”, reserving
the variance terms for the corresponding transformations of bases and components (since
only they are actually transformed).

A last word on the terminology (in case this is not already obvious): The conventions
imposed by the Ricci calculus on the position of indices is chosen in such a way that
all superscripts (hence row indices) mark contravariant objects while subscripts (hence
column indices) mark covariant objects. The whole calculus is marvellously consistent in
this respect, and that can be a great help for keeping order in one’s calculations.

At this point one could have the impression that the distinction between covariant and d
contravariant transformations is completely artificial since the “actual geometric objects” are
anyway invariant. But there is really more to it: Even though a cotangent vector remains invariant
under a coordinate transformation, we know that its components transform covariantly—and not
contravariantly or whatever! And similarly for the invariant tangent vectors, whose components
transform contravariantly—and not covariantly or whatever! The way in which the components
transform turns out to be characteristic for (co)tangent vectors—this is the traditional physicists’
view of cotangent and tangent vectors: “Anything that transforms covariantly is a cotangent
vector. Anything that transforms contravariantly is a tangent vector”.

Here “anything” means any vector (in a finite-dimensional vector space). Up to isomorphism,
every vector space is given by Rn, but it turns out to be more convenient to use Rn in the first
case. So we can rephrase the above statement as: “The cotangent space is Rn with a covariant
transformation law. The tangent space is Rn with a contravariant transformation law.” We
will refer to the former as the covariant component space and to the latter as the contravariant
component space; their elements will accordingly be called co-/contravariant component vectors.
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The idea of characterizing geometric objects by their transformation laws is a very fruitful one.
(More precisely, we should say that one specifies geometric objects by some representations that
are subject to certain constraints on how they transform under coordinate changes). This was at
the heart of Felix Klein’s “Erlangen program” of classifying geometries through their invariance
properties. In his geometry book [26], we can find numerous transformation laws at prominent
places, for all kinds of geometric objects (of course including our cotangent and tangent vectors,
albeit under different guises).

Let us now make this precise. For imposing a transformation law, we associate a row/column
of components to each coordinate system in such a way that the component rows/columns of
different coordinate systems are linked to each other by the appropriate transformation law.
(According to Proposition 2.5, this means they come from the same “abstract” cotangent or
tangent vector.)

The covariant component space at the point
p consists of all maps

D : Dp• → Rn
with the property

Dx̄ = Dx
∂x

∂x̄

for all x, x̄ ∈ Dp•.

The contravariant component space at the
point p consists of all maps

V : Dp• → Rn
with the property

Vx̄ =
∂x̄

∂x
Vx

for all x, x̄ ∈ Dp•.

Note that using Rn instead of Rn for defining the covariant component space is not essential.
The point is just that the transformation law in the definition of ≡ looks nicer by using rows
for the component vectors. If we insisted on columns, the transition Jacobian would have to be
transposed, and the component vectors would appear to the right of it.

Our definition of the component spaces follows [22]. Other authors [12][38] use the following
alternative but equivalent definition: The covariant component space is given by (Dp• ×Rn)/≡
with an equivalence ≡ defined by (x, a) ≡ (x̄, ā) iff ā = a (∂x/∂x̄); the contravariant component
space by (Dp• ×Rn)/≡ with another equivalence defined by (x, h) ≡ (x̄, h̄) iff h̄ = (∂x̄/∂x) h.

The connection is the following: In the original definition, a co- or contravariant component
vector is specified by a certain map, in the alternative definition by its (partitioned) graph.
Conversely, one can obtain maps from the equivalence class because the latter are actually maps
in disguise (which suggests that the definition by maps is more natural): Whenever both (x, a)
and (x, ā) are in the same equivalence class of (Dp•×Rn)/≡, we obtain ā = a∂x/∂x = a; similarly,
(x, h) and (x, h̄) being in a single equivalence class of (Dp• ×Rn)/≡ implies h̄ = ∂x/∂x h = h.
Hence we see that the two definitions of component spaces are indeed equivalent.

2.8 Theorem The covariant/contravariant component space at the point p is isomorphic to the
cotangent/tangent space at p.

Proof. Fixing d ∈ T ∗
p and v ∈ Tp, the component isomorphisms induce a covariant component

vector x 7→ (d|x and a contravariant component vector x 7→ |v)x. Thus we obtain a map ι∗ from
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T ∗
p to the covariant component space at p and a map ι from Tp to the contravariant component

space at p.
These maps are bijective since every covariant component vector D and every contravariant

component vector V gives rise to abstract counterparts in the following way: Picking any coordi-
nate system x ∈ Dp•, we obtain the corresponding (ι∗)−1(D) = 〈Dx|x ∈ T ∗

p and ι−1(V ) = |Vx〉x ∈
Tp. Proposition 2.3 implies immediately that (ι∗)−1 and ι∗ as well as ι−1 and ι are actually linear
isomorphisms and inverse to each other.

The only thing left to check is that (ι∗)−1 and ι−1 are well-defined. Picking another coordinate
system x̄ ∈ Dp•, we must verify that 〈Dx|x = 〈Dx̄|x̄ and |Vx〉x = |Vx̄〉x̄. Set d = 〈Dx|x and
v = |Vx〉x. Then we obtain

〈Dx̄|x̄ = 〈Dx
∂x

∂x̄
|x̄ = 〈(d|x

∂x

∂x̄
|x̄ = 〈(d|x̄|x̄ = d

and

|Vx̄〉x̄ = |
∂x̄

∂x
Vx〉x̄ = |

∂x̄

∂x
|v)x〉x̄ = ||v)x̄〉x̄ = v

from the definition of the co- and contravariant component isomorphism, the representation/com-
ponent isomorphisms of Proposition 2.3, the component transformation laws (2.5), and the rep-
resentation/component isomorphisms again (this time reversed). �

The characterization of T ∗
p and Tp described in Theorem 2.8 is also useful for defining the

(co)tangent space in a patchwork directly (i.e. without first constructing a differentiable atlas
and then using our earlier definition); actually, this is where the idea of the component spaces
has apparently come from [38]. The point is that we just need the transition Jacobians—and
these are of course available in a patchwork as the derivatives of the gluing diffeomorphisms.

Since the (co)tangent vectors are now attached to equivalence classes of glued points in Rn, it

is now more advantageous to apply the above-mentioned alternative definition: The equivalences

for gluing points and for identifying components can be combined into a single equivalence defined

on triples made up of label/coordinates/components. (The label identifies the coordinate system

in use, the coordinates specify the point, and the components refer to the actual (co)tangent vector

at this point with respect to this coordinate system.) Including the point actually anticipates a

construction that we will come across later: the (co)tangent bundle. u
2.1.4 Coderivations and Derivations

Up to now, we have treated cotangent and tangent vectors in such a way that we can per-
ceive the symmetry between them in a clear light. In some sense, however, this symmetry
is not perfect: Although one need not use any asymmetric features for buildung up the
theory (and we have indeed avoided them in our treatment), one can also take advantage
of such asymmetric features. In this subsection, we will give a brief outline of such an
approach. Let M again be a fixed n-manifold and choose a point p ∈M .

The main point is that the set F (p) is an algebra whereas C(p) is not. We can add
functions, but we cannot add curves. This also why it was trivial to introduce a vector
space structure on T ∗

p = F (p)/∼ while the definition (2.1) of linear combinations is much
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more indirect for Tp = C(p)/∼. In fact, it amounts to taking a detour via the derivations,
as we shall soon realize.

A coderivation at p ∈ M is a map

η : C(p) → R
that is compatible with the tangency re-
lation ∼ and has a linear quotient map
η∼ : Tp → R.
We write ∆∗

pM or briefly ∆∗
p for the vec-

tor space of all coderviations at p, and
we use η, ζ and its embellishments for el-
ements of ∆∗

p.

A derivation at p ∈M is a map

δ : F (p) → R
that is compatible with the cotangency
relation ∼ and has a linear quotient map
δ∼ : T ∗

p → R.
We write ∆pM or briefly ∆p for the vec-
tor space of all derivations at p, and we
use δ, ε and its embellishments for ele-
ments of ∆p.

Obviously every cotangent vector d = [f ]∼ gives rise to a coderivation η : c 7→ 〈f |c〉, and
every tangent vector v = [c]∼ to a derivation δ : f 7→ 〈f |c〉. We call η the coderivation onto
d, written as 〈f | 〉 or 〈d| 〉, while δ is called the derivation along v, denoted analogously
by 〈 |c〉 or 〈 |v〉. (Imagine 〈d| 〉 as a velocity component projected onto f and 〈 |v〉
as a directional derivative directed along v.)

Passing from a (co)derivation to its (co)tangent vectors is achieved —as we shall see
immediately—by the quotient maps η∼ and δ∼ occurring in the definition above. We call
η∼ and δ∼ the direction of η and δ, respectively. They can be directly characterized by
suitable equivalence classes.

2.9 Lemma We have

η∼ = {f ∈ F (p) | ∀c∈C(p) 〈f |c〉 = η(c)}

and
δ∼ = {c ∈ C(p) | ∀f∈F (p) 〈f |c〉 = δ(f)}

for every η ∈ ∆∗
p and δ ∈ ∆p.

Proof. By definition of ∆∗
p and ∆p, we obtain from η and δ yield linear forms η∼ : Tp → R

and δ∼ : T ∗
p → R. Using the identifications of Proposition 2.4, this means η∼ ∈ T ∗

p and
δ∼ ∈ Tp. For every v = [c]∼ ∈ Tp and d = [f ]∼ ∈ T ∗

p we have

η∼(v) = η(c) = 〈{f ∈ F (p) | ∀c∈C(p) 〈f |c〉 = η(c)}|v〉

and
δ∼(d) = η(f) = 〈{c ∈ C(p) | ∀f∈F (p) 〈f |c〉 = δ(c)}|d〉,

so the claim follows by the duality of Proposition 2.4. �
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2.10 Proposition The maps d 7→ 〈d| 〉 and η 7→ η∼ are inverse to each other, defining a
linear isomorphism T ∗

p
∼= ∆∗

p. Similarly, the maps v 7→ 〈 |v〉 and δ 7→ δ∼ are also inverse
to each other, defining a linear isomorphism Tp ∼= ∆p.

Proof. By the bilinearity of 〈|〉, the maps d 7→ 〈d| 〉 and v 7→ 〈 |v〉 are linear. Being
projections onto quotients modulo ∼, the maps η 7→ η∼ and δ 7→ δ∼ are linear as well. It
follows immediately that 〈d| 〉∼ = d and 〈 |v〉∼ = v for all d ∈ T ∗

p and v ∈ Tp as well as
〈η∼| 〉 = η and 〈 |δ∼〉 = δ for all η ∈ ∆∗

p and δ ∈ ∆p. �

Now we can understand the definition (2.1) of linear combinations of tangent vectors
in a new light: Paraphrasing it as λpvp +λppvpp = (λp〈 |vp〉 + λpp〈 |vpp〉)∼, its effect is to push
the linear structure from ∆p to Tp. As mentioned after Lemma 2.2, one could do the same
for the cotangent space—but the point is that one need not!

Next we consider component view of (co)derivations. By the above proposition, it is
clear that 〈dxi| 〉 and 〈 |dxi〉 constitute bases for ∆∗

p and ∆p, which we shall denote
respectively by ∂xi and ∂xi or even—if the coordinate system is assumed to be known—by
∂i and ∂i. Using these bases, a coderivation η = ηi ∂x

i operates on c ∈ C(p) by

η(c) = ηi ∂
ic = ηi 〈dx

i|c〉 = ηi (x
i ◦ c)′(0) = ηi

∂ci

∂t
(0)

and a derivation δ = δi ∂xi on f ∈ F (p) by

δ(f) = δi ∂if = δi 〈f |dxi〉 = δi(f ◦ xi)
′(0) = δi

∂f

∂xi
(0).

Roughly speaking, a coderivation is a vector differential operator on curves and a derivation
a partial differential operator on functions. (Note the last expression in both lines, exempli-
fying some common “abuse of notation”: One writes ci for the i-th coordinate projection of
c, and one reuses the name xi of the i-th coordinate function for the corresponding formal
differentiation parameter of f .)

Up to this point, out treatment was completely symmetric between coderivations and
derivations. From now on, however, we will consider some special features of derivations
since the coderivations are apparently of a rather meagre structural substance (this is why
they are not explicitly introduced in the standard texts on manifolds). Our first remark
serves to justify the term “derivation”.

2.11 Definition A derivation on Gr(p) is a linear functional δ satisfying the Leibniz law
in the form δ(fg) = f(p) δ(g) + g(p) δ(f).

This notion of derivation can be seen as an instance of the general concept of derivations d
δ : A → M from an R-algebra A into an A-module M ; see for example [32746]. In this sense,
a derivation δ is an R-linear map satisfying the Leibniz law in its “classical” form δ(fg) =
f δ(g)+ g δ(f). In our case, the ring R is given by the reals R, the algebra A by the germs Gr(p),
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and the module M again by Gr(p), but now equipped with the module operation A ×M → M
defined by (f, g) 7→ f(p) g.

Let us also remark that one obtains a differential algebra if one takes M = A, viewed as a

module over itself. A typical case would be C∞(I), the smooth functions on some open interval

I ⊆ R with the usual differentiation as a derivation (and the product rule as the Leibniz law). u
Since δ(1) = δ(1 · 1) = 1 · δ(1) + δ(1) · 1, it is clear that δ vanishes on constants. Every

derivation δ : F (p) → R has a canonical extension δ̃ : Gr(p) → R via δ̃(f) = δ(f − f(0))
for all f ∈ Gr(p). Therefore we will from now on identify the derivations on Gr(p) with
those on F (p). Now for the announced result on derivations.

2.12 Proposition A linear functional δ on Gr(p) is a derivation iff δ|F (p) factors through
the canonical projection λ : F (p) → F (p)/F (p)2. Then we have in particular δ (F (p)2) = 0.

Proof. For defining the quotient map δ̃ : F (p)/F (p)2 → R we have to make sure that
δ(Kerλ) = O. Taking f ∈ F (p) with λf = 0, there are f1, f2 ∈ F (p) with f = f1f2. But
then δ(f) = f1(p) δf2 + f2(p) δf1 = 0 since f1(p) = f2(p) = 0, so δ|F (p) = δ̃ ◦ λ.

Conversely, assume δ|F (p) = δ̃ ◦ λ for a linear map δ̃ : F (p)/F (p)2 → R and take

f, g ∈ Gr(p). Using the linearity of δ̃ and λ, we obtain

δ(fg) = δ̃λ
(
fg − f(p) g(p)

)
= δ̃λ

(
f − f(p)

)(
g − g(p)

)

+ f(p) δ̃λ
(
g − g(p)

)
+ g(p) δ̃λ

(
f − f(p)

)
,

where the first summand of the right-hand side vanishes since (f −f(p)(g−g(p)) ∈ F (p)2.
The Leibniz rule now follows since

δ(fg) = f(p) δ̃λ
(
g − g(p)

)
+ g(p) δ̃λ

(
f − f(p)

)
= f(p) δ(g) + g(p) δ(f),

so δ is indeed a derivation on Gr(p). �

We can now prove that the linear functionals of ∆p are indeed derivations on Gr(p). In
fact, we can even prove a little bit more. For that, let us call a derivation Cr compatible if
it annihilates all stationary function germs.

2.13 Corollary Every δ ∈ ∆p is a Cr compatible derivation on Gr(p).

Proof. By definition, every δ ∈ ∆p is compatible with the cotangency relation; in particular,
we have δ(f) = 0 for all stationary function germs f ∈ F (p), so δ is Cr compatible. But
every f ∈ F (p)2 is a fortiori stationary since f = f1f2 with f1, f2 ∈ F (p) implies

〈f |c〉 = (f1f2 ◦ c)
′(0) = ((f1 ◦ c)(f2 ◦ c))

′(0) = f1(0) 〈f2|c〉 + f2(0) 〈f1|c〉 = 0

for all c ∈ C(p). Therefore δ(Kerλ) = O and δ|F (p) factors through λ, so Proposition 2.12
ensures that δ is a derivation on Gr(p). �
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So every δ ∈ ∆p is a derivation on Gr(p), but one should not think that ∆p provides
all derivations. This is not true for r <∞; see the remarks in [5514]. For the cases r <∞,
one needs the additional hypothesis of Cr compatibility [4156], which can also be achieved
implicitly [776] by considering only those derivations that can be written as 〈 |c〉 for some
c ∈ C(p).

2.14 Proposition The algebra of Cr-compatible derivations on Gr(p) coincides with ∆p.

Proof. By Corollary 2.13, every δ ∈ ∆p is a Cr compatible derivation on Gr(p). Con-
versely, let δ be a Cr compatible derivation on Gr(p). Then δ is a linear functional that is
also compatible with the cotangency relation, and Proposition 2.12 yields a factorization
δ|F (p) = δ̃ ◦ λ with a linear map δ̃ : F (p)/F (p)2 → R. This means that δ ∈ ∆p. �

In order to understand the special case of C∞ manifolds, we have to characterize the
structure of stationary function germs [4158] in a suitable way. Assuming r > 0, we write
now more explictly F r(p) for the r-times differentiable function germs vanishing at p.

2.15 Proposition Every stationary f ∈ F r(p) can be written as f = g1h1 + . . . + gnhn
with g1, . . . , gn, h1, . . . , hn ∈ F r−1(p).

Proof. Using a ball chart, we can reduce the statement to the case M = Rn and p = 0.
By the Fundamental Theorem of Calculus, we have

f(x) =

∫ 1

0

d

dt
f(tx) dt =

n∑

i=0

xigi(x) with gi(x) =

∫ 1

0

∂f

∂xj
(tx) dt,

and gi ∈ Gr−1(p). Since f is stationary, we have also gi(0) = ∂f/∂xj(0) = 0, so gi ∈
F r−1(p). Setting hi(x) = xi, this yields the representation f = g1h1 + . . .+ gnhn. �

2.16 Corollary Every derivation on G∞(p) is C∞ compatible.

Proof. Take a derivation δ on G∞(p) and a stationary f ∈ G∞(p). By Proposition 2.15, we
can write f = g1h1 + . . .+ gnhn for some g1, . . . , gn, h1, . . . , hn ∈ F∞(p). But then δ(f) = 0
follows since δ(gihi) = 0 by the Leibniz law. �

This result explains the special status of smooth manifolds : We do not need any addi-
tional compatibility condition, so the tangent vectors can be identified with all derivations.
Restricting themselves from the outset to smooth manifolds (clearly the most important for
appliations), some textbooks therefore introduce the tangent space simply as the algebra
of all C∞ derivations.

One can see this point clearly for the Euclidean manifold M = Rn. In this case, it is
clear that all tangent spaces V can be identified canonically (see Subsection 2.2.3 for more
details). Choosing a V -basis e1, . . . , en for V , its dual V ∗-basis consists of the coordinate
functionals x1, . . . , xn. (Note that for once we do not adhere to the usual convention of
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index placement.) The bidual V ∗∗ consists of linear functionals on V ∗, and the V ∗∗-basis
dual to x1, . . . , xn are just the partial derivatives ∂1, . . . , ∂n. Hence V ∗∗ may be described as
the space of linear partial differential operators with constant coefficients. In these bases,
the canonical isomorphism V → V ∗∗ is realized by ei 7→ ∂i, and we have ∂i(f) = f(ei) for
every f ∈ V ∗. Hence the dual pairing is either realized by evaluation of linear functionals
as

V ∗ × V → R
(f, v) 7→ f(v)

or by differentiation of linear functionals as

V ∗ × V ∗∗ → R
(f, ∂) 7→ ∂(f).

The isomorphism V → V ∗∗ is packed up in the isomorphism TpM → ∆pM of Proposi-
tion 2.10.

Going back to the Cr case with 0 < r <∞, we provide an alternative characterization
of ∆p in terms of lower-order derivations. Choose any s with 0 < s < r. Then every Cr

compatible derivation on Gr(p) can be extended to a Cs compatible derivation on Gs(p),
as pointed out in [4158]. The converse is also true, yielding the following characterization
theorem [4159].

2.17 Proposition We have δ ∈ ∆p iff δ = δ̃|Fr(p) for some derivation δ̃ on Gs(p).

Proof. Take a derivation δ̃ on Gs(p) and a stationary f ∈ F r(p). Then by Proposition 2.15,
we have f = g1h1 + . . . + gnhn for suitable g1, . . . , gn, h1, . . . , hn ∈ F s(p). Since δ̃ is a
derivation on Gs(p), we have δ̃(gihi) = 0 by the Leibniz law. Conversely, every δ ∈ ∆p

represents a Cr compatible derivation δ : Gr(p) → R that can be extended to an (even Cs

compatible) derivation δ̃ : Gs(p) → R by the above remark. �

In concluding, we turn now briefly to the cotangent space. From the definition, it is
immediately clear that T ∗

p = F r(p)/∼ is the quotient space of F (p) modulo the stationary
function germs. Dually to the tangent space, this can be formulated in a “nicer” (more
algebraic) way in the special case of smooth manifolds.

2.18 Proposition A function germ f ∈ F∞(p) is stationary iff f ∈ F∞(p)2.

Proof. From Proposition 2.15 we know that every stationary function germ is in F∞(p)2.
Conversely, let f ∈ F∞(p)2. Then the Leibniz law implies δ(f) = 0 for every derivation δ
on G∞(p). By Corollary 2.16, we have δ ∈ ∆p for every such derivation. By the definition
of ∆p and Lemma 2.9, this means 〈f |c〉 = 0 for all c ∈ C(p) and hence f ∼ 0. �

In view of this restult, one can define the cotangent space of a smooth manifold as
T ∗
p = F∞(p)/F∞(p)2, and one can interpret the duality between Tp and T ∗

p in the following

way [5513]. Every cotangent vector represents a linear functional δ̃ : F∞(p)/F∞(p)2 → R,
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which by Proposition 2.12 gives a derivation when composed with the canonical projection
λ : F∞(p) → F∞(p)/F∞(p)2, and vice versa. Hence in the smooth case, we have a natural
isomorphism between ∆p and F∞(p)/F∞(p)2. For non-smooth manifolds this approach
fails because F r(p)/F r(p)2 is infinite-dimensional for r <∞; see [5514].

The construction of this isomorphism can be generalized [32748][1898] [5569] to derivations d
δ : A → M between an R-algebra A and an A-module M . In this case, it turns out that the A-

module of derivations is isomorphic to the module of all A-homorphisms between the A-modules

J/J2 and M , where the ideal J is given as the kernel of the tensor product A⊗A→ A, a1⊗a2 7→

a1a2. The module J/J2 is referred to as the universal differential module of A, and its elements

are often called Kähler differentials [48199]. This construction is of some importance is algebraic

geometry since it provides a kind of substitute for differential forms on manifolds (which we will

introduce soon). In our case, F∞(p) plays the role of J , so we can think of the cotangent vectors

in F∞(p)/F∞(p)2 as the Kähler differentials at p ∈M . u
2.2 The Differential

Now that we have defined the tangent space at each point of a manifold, we can define
the linear approximation—the differential—of a differentiable map between manifolds as a
linear map between the tangent spaces. In the following, we discuss the definition of the
differential and its basic properties. Let M and N be two manifolds as in Subsection 1.3.1,
with a map Φ: M → N , differentiable at a point p ∈M mapping to q = Φ(p).

2.2.1 Abstract Setting

By the usual pushforward and pullback constructions, every differentiable curve c : R→M
through p is “pushed forward” to a differentiable curve Φ ◦ c : R → N through q and
every differentiable function f̄ : N → R at q is “pulled back” to a differentiable function
f̄ ◦Φ: M → R at p. The transformations c 7→ Φ◦c and f̄ 7→ f ◦Φ obviously factor through
the germ equivalences ∼p and ∼q, yielding the corresponding germ transports

F (q) → F (p) and C(p) → C(q)

f̄q 7→ (f̄ ◦ Φ)p cp 7→ (Φ ◦ c)q.

For simplicity, we will suppress the germ subscripts p and q and use f for the function
germs of F (p) and c for the curve germs of C(p), just as in Section 2.1. The corresponding
objects in N will be denoted by bars, so f̄ ranges over F (q) and c̄ over C(q).

Now the (co)differential arises simply by factoring the germ transports through the
(co)tangency relation as made explicit in the following definition.
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The codifferential of Φ at the point p is
defined as the map

T ∗
qN → T ∗

pM

[f̄ ]∼ 7→ [f̄ ◦ Φ]∼,

denoted by d∗pΦ.

The differential of Φ at the point p is
defined as the map

TpM → TqN

[c]∼ 7→ [Φ ◦ c]∼,

denoted by dpΦ.

2.19 Proposition The codifferential d∗pΦ: T ∗
qN → T ∗

pM and the differential dpΦ: TpM →
TqN are well-defined linear maps.

Proof. For showing d∗pΦ: T ∗
qN → T ∗

pM well-defined, we take f̄1, f̄2 ∈ F (q) with f̄1 ∼ f̄2

and prove f̄1 ◦Φ ∼ f̄2 ◦Φ. Hence we fix c ∈ C(p) and show 〈f̄1 ◦Φ|c〉 = 〈f̄2 ◦Φ|c〉, which is
equivalent to 〈f̄1|Φ ◦ c〉 = 〈f̄2|Φ ◦ c〉. But this follows from f̄1 ∼ f̄2 since Φ ◦ c ∈ C(q). In a
completely analogous fashion, one can also prove that dpΦ: TpM → TqN is well-defined.

The linearity of d∗pΦ is immediate since

d∗pΦ(λ1 [f̄1]∼ + λ2 [f̄2]∼) = d∗pΦ [λ1f̄1 + λ2f̄2]∼ = [(λ1f̄1 + λ2f̄2) ◦ Φ]∼

= [λ1 f̄1 ◦ Φ + λ2 f̄2 ◦ Φ]∼ = λ1 [f̄1 ◦ Φ]∼ + λ2 [f̄2 ◦ Φ]∼ = λ1 d
∗
pΦf̄1 + λ2 d

∗
pΦf̄2.

In order to prove dpΦ linear, however, we have to invest a little more work (because linear
combinations are more involved for tangent vectors than for cotangent vectors). We must
prove that

L = dpΦ(λ1 [c1]∼ + λ2 [c2]∼) = dpΦ {c ∈ C(p) | ∀f∈F (p) 〈f |c〉 = λ1 〈f |c1〉 + λ2 〈f |c2〉}

= [Φ ◦ c | c ∈ C(p) ∧ ∀f∈F (p) 〈f |c〉 = λ1 〈f |c1〉 + λ2 〈f |c2〉]∼

and

R = λ1 dpΦ[c1]∼ + λ2 dpΦ[c2]∼ = λ1 [Φ ◦ c1]∼ + λ2 [Φ ◦ c2]∼

= {c̄ ∈ C(q) | ∀f̄∈F (q) 〈f̄ |c̄〉 = λ1 〈f̄ |Φ ◦ c1〉 + λ2 〈f̄ |Φ ◦ c2〉}

are the same. For showing L ⊆ R, we take c ∈ C(p) with 〈f |c〉 = λ1 〈f |c1〉 + λ2 〈f |c2〉 for
all f ∈ F (p) and prove 〈f̄ |Φ ◦ c〉 = λ1 〈f̄ |Φ ◦ c1〉 + λ2 〈f̄ |Φ ◦ c2〉 for all f̄ ∈ F (q). But the
latter is equivalent to 〈f̄ ◦ Φ|c〉 = λ1 〈f̄ ◦ Φ|c1〉 + λ2 〈f̄ ◦ Φ|c2〉, and this follows from the
choice of c since f̄ ◦ Φ ∈ F (p). Now for the converse L ⊇ R, let c̄ ∈ C(q) be such that
〈f̄ |c̄〉 = λ1 〈f̄ |Φ◦c1〉+λ2 〈f̄ |Φ◦c2〉 for all f̄ ∈ F (q); we must find c ∈ C(p) with Φ◦c ∼ c̄ such
that 〈f |c〉 = λ1 〈f |c1〉+λ2 〈f |c2〉 for all f ∈ F (p). Choosing c by [c] = λ1 [c1]∼+λ2 [c2]∼, the
last condition is trivially fulfilled, so it remains to prove 〈f̄ |Φ ◦ c〉 = 〈f̄ |c̄〉 for all f̄ ∈ F (q).
By the definition of c, we can compute

〈f̄ |Φ ◦ c〉 = 〈f̄ ◦ Φ|c〉 = λ1 〈f̄ ◦ Φ|c1〉 + λ2 〈f̄ ◦ Φ|c2〉 = λ1 〈f̄ |Φ ◦ c1〉 + λ2 〈f̄ |Φ ◦ c2〉;

but this is 〈f̄ |c̄〉 by the choice of c̄. �
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For emphasizing the symmetry of 〈f ◦ Φ|c〉 = 〈f |Φ ◦ c〉, we may also introduce the
generalized rate 〈f |Φ|c〉 = (f ◦ Φ ◦ c)′(0) for it. We can think of this expression in the
following way: It measures the rate of change of the f -value of Φ along the c-direction.

As we may expect from the symmetry in the definition of the differential and the
codifferential, the latter is the dual of the former. In other words, the categorical duality
(pullback versus pushforward) is respected by the linear structure (operating on the dual
versus primal space).

2.20 Proposition The codifferential is the dual of the differential, (dpΦ)∗ = d∗pΦ. In
detail, this means

〈(d∗pΦ) d̄|v〉 = 〈d̄|(dpΦ) v〉 (2.11)

for all d̄ ∈ T ∗
qN and v ∈ TpM .

Proof. In the sense of the identification installed by Proposition 2.4, the identity (dpΦ)∗ =
d∗pΦ is nothing more than a reformulation of the defining property (2.11), so we just have
to prove the latter. For arbitrary d̄ = [f̄ ]∼ ∈ T ∗

qN and v = [c]∼ ∈ TpM , we obtain

〈(d∗pΦ) d̄|v〉 = 〈f̄ |Φ|c〉 = 〈d̄|(dpΦ) v〉

as claimed. �

The language of Subsection 2.1.4 provides another way of understanding this pull-
back/pushforward action. Let us use the explicit notation Φ∗ for the pullback of Φ and Φ∗

for its pushforward; this notation will be “globalized” in Subsection 2.3.4. Thus Φ∗ is de-
fined by f 7→ f ◦Φ for any function f defined in a neighborhood of q ∈ N while Φ∗ operates
on curves c through p via c 7→ Φ ◦ c. Factoring through germ equivalence, this yields the
maps Φ∗ : F (q) → F (p) and Φ∗ : C(p) → C(q). In the sense of Proposition 2.10, we may
interpret the codifferential as a map d∗pΦ: ∆∗

qN → ∆∗
pM and accordingly the differential

as a map dpΦ: ∆pM → ∆qN . Then one sees immediately that d∗pΦ acts by η̄ 7→ η̄ ◦Φ∗ and
dpΦ by δ 7→ δ ◦ Φ∗.

As we can immediately read off from the definition, both the codifferential and the
differential respects identity and composition in the sense of the generalized uniformity
relation

d∗p 1M = 1T ∗

pM and dp 1M = 1TpM

and the generalized chain rule

d∗p(Ψ ◦ Φ) = d∗pΦ ◦ d∗qΨ and dp(Ψ ◦ Φ) = dqΨ ◦ dpΦ

if Ψ is a map from N to another manifold, differentiable at q. Hence we can view the
codifferential and the differential respectively as a cofunctor and functor

d∗... : PtMan → Vec and d... : PtMan → Vec
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from the category PtMan of pointed manifolds to the category Vec of vector spaces.
(Following [13], we use “functor” as a synonym for “covariant functor” and “cofunctor” as
a synonym for “contravariant functor”.)

Let us make this a bit more explicit: A pointed manifold is a manifold with a distin-
guished point called the “base point”. Clearly, a morphism Φ between pointed manifolds
(M, p) and (N, q) is then given by a continuous map Φ: M → N with Φ(p) = q, dif-
ferentiable at p. The functors d∗... and d... are thought to operate with the basepoint p
substituted for the slots ...; they map a pointed manifold (M, p) ∈ PtMan respectively
to the vector spaces T ∗

pM ∈ Vec and TpM ∈ Vec, and a morphism of pointed man-
ifolds Φ: (M, p) → (N, q) to the codifferential d∗pΦ: T ∗

qN → T ∗
pM and the differential

dpΦ: TpM → TqN .

2.2.2 Representation through Components

In Subsection 2.1.2 we have seen how to represent any cotangent and tangent vector by its
list of components. These components depend on the choice of a coordinate system around
the point p in question, and they refer to an expansion with respect to the (co)frames that
we have introduced inSubsection 2.1.3.

Now the question is near at hand: Fixing a coordinate system x around p and x̄ around
q, how can we compute the matrix representation of the (co)differential with respect to
the (co)frame in the (co)tangent spaces? The answer is strikingly simple: Extracting the
local representative with respect to x and x̄, its Jacobian operates from the left as the
differential and from the right as the codifferential!

2.21 Proposition Let x and x̄ be coordinate systems around p and q, respectively. If
d = (d∗pΦ) d̄ and v̄ = (dpΦ) v for a cotangent vector d̄ ∈ T ∗

qN and tangent vector v ∈ TpM ,
we have the matrix relations

(d|x = (d̄|x̄ Φ′
x̄x(0) and |v̄)x̄ = Φ′

x̄x(0) |v)x

for the corresponding component vectors (see the diagrams below), yielding

di =
∂x̄j(Φ)

∂xi
d̄j and v̄i =

∂x̄i(Φ)

∂xj
vj (2.12)

when written in the Ricci calculus.

T ∗
pM T ∗

qN

Rm Rn

��
�
�
�
�
�
�
�
�
�

(|x

oo
d∗pΦ

��
�
�
�
�
�
�
�
�
�

(|x̄

oo

d∗
0
Φx̄x

TpM TqN

Rm Rn
��
�
�
�
�
�
�
�
�
�

|)x

//
dpΦ
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�
�
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�
�
�

|)x̄

//

d0Φx̄x
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Proof. Using the explicit component formulae (2.2), we can compute

di = 〈d|dxi〉 = 〈(d∗pΦ) d̄|dxi〉 = 〈(d∗pΦ) d̄j dx̄
j|dxi〉 = 〈x̄j ◦ Φ|xi〉 d̄j

for the cotangent components and analogously

v̄i = 〈dx̄i|v̄〉 = 〈dx̄i|(dpΦ) v〉 = 〈dx̄i|(dpΦ) vjdxj〉 = 〈x̄i|Φ ◦ xj〉 v
j

for the tangent components. But the Jacobian Φ′
x̄x(0) = (x̄ ◦ Φ ◦ x−1)′(0) obviously has

〈x̄i|Φ|xj〉 = 〈x̄i|Φ ◦ xj〉 = 〈x̄i ◦ Φ|xj〉

for its (i, j) entry, hence we obtain (2.12). �

The transformation formulae (2.12) can be seen as a linear approximation of Φ in the
row spaceRn or column spaceRn. The notation ∂x̄ (Φ)/∂x for the transformation Jacobian
is quite similar to our notation for the transition Jacobian introduced in Subsection 2.1.3.
In fact, the corresponding transition formulae (2.5) are a special case when we have one
manifold M = N and the identity map Φ = 1M . In this case, we suppress the latter in the
notation for the Jacobian, just writing ∂x̄/∂x then.

Sometimes one also suppresses reference to the charts. If the target chart x̄ is inessential,
one can write ∂Φ/∂x as in [22]. If both the target chart x̄ and the source chart x are clear
from the context, the notatation ∂Φ can be used. (In components, these notations would
be ∂Φi/∂xj and ∂jΦ

i, respectively.)

In the language of the component spaces explained in Subsection 2.1.3, the formulae (2.12) d
take on the form

Dx = D̄x̄
∂x̄(Φ)

∂x
and V̄x̄ =

∂x̄(Φ)

∂x
Vx,

which should now be read as a definition: The codifferential is a transition-compatible linear map

between the cotangent vectors D̄ and D, the differential between the tangent vectors V and V̄ . u
2.2.3 The Special Case of Vector Spaces

If the manifold in question is a vector space V , we know from Example 1.20 that each
choice of basis (b1, . . . , bn) corresponds to a canonical atlas {x} for V , where x : V → Rn

is the component chart [2727] , given by v 7→ (λ1, . . . , λn) for every vector v = λi bi. In
the special case V = Rn, we have the canonical basis (δ1, . . . , δn), corresponding to the
component chart 1V and the atlas {1V } treated in Example 1.19.

An “abstract” linear map Φ: V → W between “abstract” vector spaces V and W can
be described by its coordinate representation if we choose bases in V and W . If x and x̄
are the corresponding component charts, the coordinate representation of Φ with respect
to these bases is nothing else than the local representative Φx̄x : Rm → Rn.

A change of basis in V corresponds to replacing x by another component chart x̄. In
Linear Algebra, this is usually described by a transition matrix, defined as the matrix of
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the identity map with respect to these bases [3116]. Hence it is just the transition Jacobian
∂x̄/∂x = 1′x̄x(0), and the usual formula for “coordinate transformations” can be seen in
the right-hand formula of (2.5); the left-hand formula of (2.5) describes the corresponding
basis change in the dual space.

Let us now turn to cotangent and tangent spaces. Any component chart x : V → Rn

gives rise to the charts x− x(p) centered at a point p ∈ V ; these charts are again denoted
by x if there is no ambiguity. Thus we get a coframe dx1, . . . , dxn for T ∗

p V and a frame
dx1, . . . , dxn for TpV , and these spaces are all canonically isomorphic to each other (once
we have fixed the component chart x). Observe that dx1, . . . , dxn are just the coordinate
planes, while dx1, . . . , dxn are the coordinate axes. As opposed to general manifolds, we
can thus identify all cotangent spaces with each other (and also all tangent spaces with
each other).

For a differentiable map Φ: V →W with q = Φ(p), these canonical isomorphisms allow
us to interpret the differential dpΦ: TpV → TqW with respect to fixed bases (and thus
component charts) in V and W as a linear map dpΦ: Rm → Rn and the codifferential
d∗pΦ: T ∗

qW → T ∗
p V as a linear map d∗pΦ: Rn → Rm. This is essentially what we did in

Subsection 1.1.1, using the canonical bases in V = Rm and W = Rn corresponding to the
component charts 1V and 1W , respectively.

If Φ: V → W is a linear map, its codifferentials coincide for all points p ∈ M (and
of course also its differentials coincide for all points); hence we may suppress p in this
case. We see here a generalized picture of the three levels described in Chapter 0: First
the abstract map Φ: M → N along with its dual Φ∗ : N∗ → M∗. Second their coor-
dinate representations dΦ: Rn → Rn and d∗Φ: Rn → Rn, which are identical with the
local representatives of Φ and Φ∗, respectively. Third the Jacobians ∂Φ and ∂Φ⊤ as the
corresponding representation matrices.

Next we describe hybrid cases—those where either the domain or the codomain of a
map is a vector space. If this vector space is just R, we are led to functions and curves. For
functions on Rn and curves in Rn, the derivative has the intuitive meaning of cotangent
vector and tangent vectors as explained in Chapter 0. We can now generalize this to
functions on M and curves in M .

2.22 Definition The cotangent vector of a function f : M → R at a point p ∈ M is the
codifferential d∗pf . The tangent vector of a curve c : R→M at p is the differential dpc.

As a codifferential or differential, these concepts are linear functions and not just cov-
ectors and vectors as in the special case M = Rn. But they can be naturally identified
with covectors and vectors as we shall see now. For writing this succinctly, let us agree
that [f ]∼ for a function f : M → R means [f̃ ]∼, where f̃ is the function germ of f( )− α
for α = f(p); similarly, [c]∼ for a curve c : R → M stands for [c̃]∼, where c̃ is the curve
germ of c( + τ) for τ ∈ R such that c(τ) = p. (These conventions reflect the intuition
that differentiation is only concered with the local behavior and that we can furthermore
discard constants.)
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2.23 Proposition There are natural isomorphisms carrying the cotangent vector of a
function f at a point p ∈ M to the covector [f ]∼ ∈ T ∗

pM and the tangent vector of a
curve c at p to the vector [c]∼ ∈ TpM .

Proof. The codifferential d∗pf : T ∗
αR → T ∗

pM is defined on a one-dimensional vector space
with canonical coframe {[1R − α]∼}, so we can identify d∗pf with its value

(d∗pf) [1R − α]∼ = [(1R − α) ◦ f ]∼ = [f̃ ]∼ = [f ]∼,

as claimed.
Also the differential dpc : TτR → TpM is defined on a one-dimensional vector space,

now having {[1R + τ ]∼} as its canonical frame, and we may identify

(dpc) [1R + τ ]∼ = [c ◦ (1R + τ)]∼ = [c̃]∼ = [c]∼

with the differential dpc. �

Somewhat loosely, we may summarize this as follows: A cotangent vector [f ]∼ ∈ T ∗
pM

is the cotangent vector of any of its representatives f , and a tangent vector [c]∼ ∈ TpM
is the tangent vector of any of its representatives c. This confirms the terminology of
“cotangent space” and “tangent space”, and it justifies the notation (dx1, . . . , dxn) for the
coframe and (dx1, . . . , dxn) for the frame in the following sense: By Proposition 2.23, we
can identify dxi = [xi]∼ ∈ T ∗

pM with d∗px
i and dxi = [xi]∼ ∈ TpM with dpxi. Formally

speaking, we are just suppressing the point p ∈ M and the asterisk in the coframe (the
latter is clearly motivated by Definition 2.22).

The next interesting hybrid map is exemplified by a chart x : M → Rn and its para-
metrization x−1 : Rn →M . It turns out that we obtain well-known maps when we pass to
their (co)differential—the component maps for the tangent and cotangent space, respec-
tively! This is not surprising since the idea of the tangent space is to provide a linear
approximation of the manifold (locally given through a chart or a parametrizations).

2.24 Proposition For a chart x centered at p ∈ M , we have dpx = |)x and d∗0x
−1 = (|x

as well as d0x
−1 = |〉x and d∗px = 〈|x.

Proof. The differential dpx : TpM → T0Rn may be interpreted as a linear map dpx : TpM →Rn. This can be done by identifying T0Rn with Rn, mapping the frame (dδ1, . . . , dδn) of
the former to the frame (δ1, . . . , δn) of the latter. For proving dpx = |)x, we consider an
arbitrary frame vector dxi = [x−1 ◦ δi]∼ ∈ TpM and compute

(dpx) dxi = [x ◦ (x−1 ◦ δi)]∼ = [δi]∼ = dδi

which can be identified with |dxi)x = δi ∈ Rn.
Analogously, the codifferential d∗0x

−1 : T ∗
pM → T ∗

0Rn is interpreted as a linear map
d∗0x

−1 : T ∗
pM → Rn by identifying T ∗

0Rn withRn, this time mapping the frame (dδ1, . . . , dδn)
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of the former to the frame (δ1, . . . , δn) of the latter. For proving d∗0x
−1 = (|x, we take now

a coframe vector dxi = [δi ◦ x]∼ ∈ T ∗
pM and compute

(d∗0x
−1) dxi = [(δi ◦ x) ◦ x−1]∼ = [δi]∼ = dδi,

which corresponds of course to δi ∈ Rn.
The other two formulae are an immediate consequence of the bijectivity of x and the

functoriality of dp as well as d∗p. �

Recall that we called the image of an “abstract point” under a chart x its coordinates,
whereas the image of an “abstract cotangent / tangent vector” under the component
isomorphisms are of course called its components. In this sense, we could say that the chart
differential passes from coordinates (nonlinear labels) to components (linearized labels),
and this is also true for the differential of an arbitrary map between manifolds.

2.2.4 Co- and Contravariance Revisited

In Subsection 2.1.3 we have investigated the notion of co- and contravariant transformation
laws from a geometric viewpoint : Changing from a coordinate system x to another x̄, an
object transforms by rescaling its representation by ∂x/∂x̄ for the covariant and ∂x̄/∂x for
the contravariant case.

On the other hand, we know from category theory that contravariant functors (also
called “cofunctors”) reverse the order of composition while covariant functors (otherwise
just “functors”) preserve it. We have seen an example of this in Subsection 2.2.1: the
differential d... : PtMan → Vec is a functor, the codifferential d∗... : PtMan → Vec a co-
functor.

As one would suspect, there is a relation between the categorical and the geometric
notions of variance. But we must be careful because, as pointed out in Subsection 2.1.3, a
coordinate change (also known as a chart transition) manifests itself in an inverse manner:
Expanding by a factor κ > 1 is realized by a coordinate change 1x̄x : A → Ā with x(p) =
κ x̄(p), which appears to be a compression by a factor κ−1, however!

For any vector space V , a linear endomorphism A : V → V may be interpreted as an
active or passive transformation: as a coordinate change or as an actual movement. These
two interpretations are exactly inverse to each other, in the following sense. On the one
hand, a passive transformation 1x̄x assigns to a point p new coordinates, which can be
interpreted as the coordinates of another point p̄ in the old system. On the other hand,
the point p is moved to p̄, by the active transformation 1xx̄. More precisely: The transition
matrix 1x̃x from a basis x = (x1, . . . , xn) to its A-image β̃ = (Ax1, . . . , Axn) is the inverse
of the representation matrix Axx.

From a geometric point of view, we must therefore regard a transition 1x̄x : A → Ā
as a morphism from Ā to A. This makes the differential into a contravariant functor
d... : PtMan∗ → Vec and the codifferential into a covariant functor d∗... : PtMan∗ → Vec.
In order to avoid the notational encumbrance of dealing with chart domain overlaps, let
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us introduce the quotient category [3451] of PtMan with respect to germ equivalence at
the base points. Writing PtMan∼ for this category, it is obvious that the differential and
codifferential factor over this quotient category, so we obtain in our setting a contravariant
functor d... : PtMan∗

∼ → Vec and a covariant functor d∗... : PtMan∗
∼ → Vec.

The co- and contravariance of the transformation laws comes from the correspond-
ing Hom-functors. Fix a manifold M with base point p as an object in PtMan∼ and
consider the two covariant Hom-functors Hom(TpM, ),Hom(T ∗

pM, ) : Vec → Set and
the two contravariant Hom-functors Hom( , TpM),Hom( , T ∗

pM) : Vec → Set. Compos-
ing them with the contravariant functor d... : PtMan∗

∼ → Vec and the covariant functor
d∗... : PtMan∼ → Vec, we obtain two covariant functors

B∗ = Hom(dp , TpM),C∗ = Hom(T ∗
pM, d∗p ) : PtMan∗

∼ → Set

as well as two contravariant functors

B∗ = Hom(d∗p , T ∗
pM),C∗ = Hom(TpM, dp ) : PtMan∗

∼ → Set

As we shall see in a moment, the covariant / contravariant functors give rise to covariant
/ contravariant transformation laws, namely B∗ and B∗ for the bases, C∗ and C∗ for the
components.

T ∗
pM M TpMRn Rn

d∗...

⇐=
A Ā

d...

⇐=
Rn Rn

T ∗
pM M TpM

����
��

��x

��
??

??
?? x̄

����
��

��|)x

��
??

??
?? |)x̄??�����

〈|x

oo

� ∂x̄/∂x

__?????

〈|x̄

��
??

??
??

x−1

//
1x̄x

����
��

��

x̄−1 ��
??

??
??

|〉x

//
∂x̄/∂x �

����
��

��

|〉x̄

__?????
(|x

??����� (|x̄

The above diagram visualizes the action of these functors, showing (from left to right):
in the upper layer the contravariant functors B∗ and C∗, in the lower layer the covariant
functors C∗ and B∗. (In order to avoid confusion, we have displayed the morphisms in
PtMan∼ rather than PtMan∗

∼, namely by way of representatives x : U → A and x̄ : Ū → Ā
but with the chart domains U and Ū suppressed. Note also that the functors B∗,C∗,C∗,B∗

are all to be applied to the middle morphism 1x̄x, leading to a vertical reflection of the
diagonal arrows in the two outer diagrams.)

Let us now see what these diagrams mean in detail. Applying the functor C∗ and C∗

respectively to the identities x̄ = 1x̄x ◦ x and x−1 = x̄−1 ◦ 1x̄x, Proposition 2.24 yields
|)x̄ = (∂x̄/∂x) · |)x and (|x = (|x̄ · (∂x̄/∂x). If we multiply the latter identity by the inverse
Jacobian ∂x/∂x̄ and substitute an arbitrary cotangent vector d ∈ T ∗

pM and tangent vector
v ∈ TpM , we obtain |v)x̄ = (∂x̄/∂x) · |v)x and (d|x̄ = (∂x/∂x̄) · (d|x; these are exactly the
formulae (2.5) of Subsection 2.1.3, describing the co- and contravariant transformations of
the components.
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In a similar fasion, we can now derive the corresponding transformation of the bases by
applying the functors B∗ and B∗ to the identities x̄ = 1x̄x ◦ x and x−1 = x̄−1 ◦ 1x̄x. Using
again Proposition 2.24, this gives 〈|x̄ = 〈·(∂x̄/∂x)|x and |〉x = |(∂x̄/∂x)·〉x̄. Precomposing
the latter identity by the inverse Jacobian ∂x/∂x̄ and substituting an arbitrary coframe
vector δi and frame vector δi, we obtain respectively

dx̄i = 〈δi
∂x̄

∂x
|x = 〈δik

∂x̄k

∂xj
δj|x = 〈

∂x̄i

∂xj
δj |x =

∂x̄i

∂xj
〈δj|x =

∂x̄i

∂xj
dxj

and

dx̄i = |
∂x

∂x̄
δi〉x = |δj

∂xj

∂x̄k
δki 〉x = |δj

∂xj

∂x̄i
〉x =

∂xj

∂x̄i
|δj〉x =

∂xj

∂x̄i
dxj ,

which are exactly the basis transformation laws (2.10) of Subsection 2.1.3.

The functorial view of cotangent and tangent vectors also enables a better understanding of d
the component spaces introduced at the end of Subsection 2.1.3.

2.25 Proposition Up to isomorphism, the (co)differential is determined uniquely as (co)functor
PtMan∼ → Vec that maps open sets A, Ā of Rn to the vector space Rn and differentiable maps
f : A→ Ā to their (co)differential.

Proof. Let T : PtMan∼ → Vec be any functor with the required differential properties and M
a fixed manifold with differentiable structure D and base point p. Then every v ∈ TM induces
a map V : Dp• → Rn by sending x ∈ Dp• to Vx = (T x)v. Since T is a functor, we have
Vx̄ = (∂x̄/∂x) · Vx, which means that V is a contravariant component vector in the sense of
Theorem 2.8. Conversely, any contravariant component vector V : Dp• → Rn comes from a
unique v ∈ TM since we have v = (T x)−1 Vx for an arbitrary x ∈ Dp•. This means that TM is
isomorphic to the contravariant component space and hence by Theorem 2.8 also to TpM .

Now consider a map Φ: M → M̄ between an n-manifold M and an m-manifold M̄ mapping
p ∈ M to q ∈ M̄ . The morphism T Φ: TM → T M̄ can be interpreted as a linear map between
the corresponding component spaces the contravariant component vector determined by (T Φ)v ∈
T M̄ to the contravariant component vector determined by v ∈ TM . Applying the functor T to
the identity Φx̄x = x̄ ◦ Φ ◦ x−1 yields V̄ = (T Φ)V with

V̄x̄ =
∂x̄(Φ)

∂x
Vx,

which is exactly the component representation 2.12 of the differential dpΦ under the above iso-
morphisms TM ∼= TpM and T M̄ ∼= TqM̄ .

The proof for the codifferential is completely analogous, using covariant instead of contravari-
ant component vectors. �

Note that a differential T ∗ : PtMan∼ → Vec in the sense of Proposition 2.25 is a functor,

a codifferential T∗ : PtMan∼ → Vec a cofunctor. Looking at it “geometrically”, however, the

differential appears as a contravariant functor T ∗ : PtMan∗∼ → Vec and the codifferential as a

contravariant functor T∗ : PtMan∗
∼ → Vec. This is consistent with the terminology of Theo-

rem 2.8: As we have seen in the proof of Proposition 2.25, the object function of T ∗ provides the

contravariant component space, the object function of T∗ the covariant component space. u
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2.2.5 The Rank Theorem

We know from differential calculus in Rn that several (local) properties of a differentiable
map can be characterized by properties of its linear approximation. Recall for example the
Inverse Mapping Theorem 1.1. In the following, we first discuss the Rank Theorem, which
is a generalization of the Inverse Mapping Theorem and the Implicit Function Theorem.
Using charts we translate the result to differentiable maps between manifolds and their
differentials.

We first look at the situation in Linear Algebra. Let A : V → W be a linear map
of rank r between finite dimensional vector spaces. Then we know that there are linear
isomorphisms ϕ : V → Rm and ψ : W → Rn such that ψAϕ−1 : Rm → Rn is given by

(x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0).

Let now f : U → Rn be a differentiable map and x ∈ U ⊆ Rm. We define the rank of
f at x, denoted by rnkx f , as the rank of the differential dxf or the Jacobian matrix f ′(x).
The Rank Theorem [9109] tells us that every differentiable map that of locally constant
rank looks like the linear counterpart in suitable coordinates.

2.26 Theorem (Rank Theorem for Vector Spaces) Let f ∈ Cs(Ũ ,Rn) with s ≥ 1,
Ũ ⊆ Rm, and consider a point p ∈ Ũ with image q = f(p). If the map f has locally
constant rank r around p, there exist open neighborhoods U and V of p and q, respectively,
and Cs diffeomorphisms ϕ : U → A and ψ : V → B with ϕ(p) = 0, ψ(q) = 0 such that
ψfϕ−1 : A→ B is given by

(x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0),

locally around 0.

Notice that if we consider f as a differentiable map between the manifolds Ũ andRn, the conclusion of this theorem says that there exists a local representative fψϕ of the
indicated form.

Locally the rank of a differentiable map cannot decrease: For rnkx f = r, the Jacobian
matrix f ′(x) has an r×r submatrix with nonzero determinant. Since the Jacobian depends
continuously on x and the determinant is continuous, this subdeterminant is also nonzero
in a neighborhood of x, and the rank there is at least r. In fact, the rank can increase as
we can see from considering x = 0 in the example f(x) = x2.

There are two cases where the rank cannot increase and is thus locally constant: If
the rank of f at x is either m or n hence maximal for the given m and n. The condition
rnkx f = m is of course only possible if m ≤ n and equivalent to dxf being injective (by the
Rank-Nullity Theorem of Linear Algebra). Then we call f an immersion at x. Similarly,
we call f a submersion at x if dxf is surjective so rnkx f = n and hence in particular
m ≥ n. We call f an immersion / submersion if it is one at every point.

We are in the situation of the Inverse Mapping Theorem if f is both an immersion and
a submersion at x, so rnkx f = m = n. If f is a submersion at x, then x is also called a
regular point of f , see Subsection 1.1.2.
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By the Rank Theorem, we know that an immersion (assuming m ≤ n) can be repre-
sented locally by an embedding Rm → Rn

(x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0),

and a submersion (assuming m ≥ n) by a projectionRm → Rn

(x1, . . . , xn, . . . , xm) 7→ (x1, . . . , xn).

Therefore an immersion is locally injective while a submersion is open.
Let now M and N be two manifolds with a map Φ: M → N , differentiable at a point

p ∈ M mapping to q = Φ(p) ∈ N . We define the rank of Φ at p, denoted by rnkp Φ, as
the rank of the differential dpΦ: TpM → TqN . From Section 2.2.2 we know that a matrix
representation of the differential is given by the Jacobian of a local representative of Φ. So
the rank of a differentiable map is also the rank of the Jacobian matrix of any of its local
representative, rnkp Φ = rnkx Φψϕ with x = ϕ(p).

From the Rank Theorem 2.26 for vector spaces, we immediately obtain the following
version for manifolds.

2.27 Theorem (Rank Theorem for Manifolds) Let Φ: M → N be differentiable with
locally constant rank r = rnkp Φ around p. Then there exist charts ϕ and ψ centered at p
and q, respectively, such that the local representative Φψϕ is given by

(x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0),

locally at 0.

Immersions and submersions are defined as before. Then the Rank theorem implies in
particular that for immersions there is a local representative Φψϕ given by

(x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0)

and for submersions by

(x1, . . . , xn, . . . , xm) 7→ (x1, . . . , xn).

We obtain also the following version of the Inverse Mapping Theorem for differentiable
maps between manifolds: The differential dpΦ at p is an isomorphism iff Φ is a local
diffeomorphism at p.

Immersions can be used to define a more general notion of submanifolds than we con-
sidered in Subsection 1.4.1, see for example [779], [46234] and [275]. Let us briefly discuss
this notion and its relation to our definition. A manifold N is called a submanifold of a
manifold M if N ⊆M and the embedding

ι : N → M

p 7→ p
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is an immersion. Note that in the definition we require a differentiable structure on N ,
so N already has a topology. Since N is a subset of M , we can also consider the induced
topology on N . In general, these two topologies are different. We only know that the
induced topology is contained in the topology as a manifold (this is simply the continuity
of the map ι).

The manifold N is an embedded submanifold (also called a regular submanifold) if the
embedding ι is a homeomorphism onto its image, that is, the induced topology and the
topology as a manifold coincide. Otherwise N is sometimes called an immersed submani-
fold, to emphasize that it is not an embedded submanifold.

Of course we should verify that this definition of embedded submanifold is equivalent
to Definition 1.50. From Subsection 1.4.1 we know that the topology as a manifold and
the induced topology are equal, and from Proposition 1.53 that the embedding ι is differ-
entiable. Conversely, one can show that the above definition implies the existence of charts
as required in Definition 1.50 of embedded submanifolds by applying the Rank Theorem
2.27 to the given immersion.

Submanifold in the above sense can also be interpreted as parametrizations with ar-
bitrary manifolds as parameter set. Let Φ: N → M be an injective immersion. We can
decompose Φ = ι ◦ Φ̃ into a bijective map Φ̃ : N → Φ(N) and the insertion ι. Since Φ̃
is a bijection, it induces a differentiable structure on N ′ = Φ(N). Then N ′ becomes a
manifold, Φ̃ a diffeomorphism, and ι = Φ ◦ Φ̃−1 an immersion. But this means that N ′ is
a submanifold of M .

Submersions can be used to implicitly define manifolds. Compare to Subsection 1.1.2,
where we discussed this construction for embedded submanifolds of Rm. Let M and L
be two manifolds of dimension m and k, respectively, with k ≤ m. Let Φ: M → L a
differentiable map, q ∈ L and N = Φ−1(q). We call q a regular value of Φ if Φ is a
submersion at each point in N .

2.28 Theorem (Regular Value Theorem) If q ∈ L is a regular value of Φ: M → L,
then N is an embedded submanifold of M of codimension k.

Proof. Let p ∈ N and n = m − k. Since Φ is a submersion at p, the Rank Theorem 2.27
implies that there exist charts ϕ : U → A and ψ centered at p and q, respectively, such
that the local representative Φψϕ is given by

(x1, . . . , xn, xn+1, . . . , xn+k) 7→ (xn+1, . . . , xn+k).

We show that for the chart ϕ, we have

p′ ∈ U ∩N ⇔ (ϕn+1(p′) . . . , ϕn+k(p′)) = 0.

Note that for p′ ∈ U , we have Φ(p′) = q iff

ψ(Φ(p′)) = ψΦϕ−1(ϕ(p′)) = ψ(q).
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Since ψ(q) = 0, and the local representative is given by

Φψϕ(ϕ(p′)) = (ϕn+1(p′), . . . , ϕn+k(p′)),

the stated equivalence is clear. Hence

ϕ(U ∩N) = A ∩Rn,

and we have proved for every p ∈ N the existence of charts as required in Definition 1.50
of embedded submanifolds. �

Just like injective immersions can be compared with a parametric description of varieties
(see above), submersions correspond to an implicit description of varieties.

2.3 Tensor Fields on a Manifold

2.3.1 Fiber Bundles

In Subsection 2.2.1 we have viewed the codifferential and the differential respectively as a
cofunctor and functor

d∗... : PtMan → Vec and d... : PtMan → Vec

from the category PtMan of pointed manifolds to the category Vec of vector spaces.
Specifically, if Φ: M → N is a continous map between manifolds M and N , differentiable
at the point p ∈ M with image q = Φ(p), we obtain linear maps d∗pΦ: T ∗

qN → T ∗
pM and

dpΦ: TpM → TqN .
Suppose now that Φ is differentiable at every point p ∈M . Then we can construct the

tangent spaces and differentials for all these points (we need not mention that everything
works just as well in the co-style). It would be nicer, though, to compress all these tangent
spaces into just two super-objects (one for M and one for N), and to paste together all the
differentials into one super-morphism between these two super-objects. This is what vector
bundles can do for us: they provide the kind of super-objects that we need here, and the
corresponding bundle maps are the required super-morphisms. Writing VecBnd for this
category, the differential comes out as a functor d : Man → VecBnd and the codifferential
as a cofunctor d∗ : Man → VecBnd. But before introducing vector bundles, we will briefly
have a look at the more general concept of fiber bundles.

Let B be a fixed topological space. A bundle over B is a topological space E together
with a surjective continuous map π : E → B. We call E the “total space” (containing the
“bundle points”) and B the “basis space” or just “basis” (containing the “basis points”),
whereas π is referred to as the “bundle projection” or just “projection”. A bundle over B
will be called a B-bundle for short. Now for some basic vocabulary about bundles.

• The fiber over p ∈ B is defined as the closed set π−1(p), denoted by Ep.
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• For an open set U in B, the slice over U , here denoted by EU , is the bundle π−1(U)
over B, of course using the restricted projection π|EU . (A more common notation for
EU is actually E|U , but we prefer to make the relation to fibers more explicit: We
view Ep as abbreviation for E{p}, except that {p} is not open.)

• Let Ẽ be another B-bundle. A bundle morphism (over B) is a continuous map
h : E → Ẽ such that π = π̃ ◦ h, where π and π̃ are respectively the projections of E
and Ẽ. This means we have h(Ep) ⊆ Ẽp for every p ∈ B.

• If h : E → Ẽ is moreover a homeomorphism, we speak of a bundle isomorphism (over
B), and we call the bundles E and Ẽ isomorphic. Note that h swaps Ep and Ẽp for
every p ∈ B.

• The bundles over a fixed basis B form a category with morphisms the bundle mor-
phisms over B, a subcategory of the slice slice category Top ↓ B, where Top denotes
the usual category of topological spaces with morphisms the continuous maps.

• More generally, one may also consider the bundles over arbitrary bases as a category,
this time a subcategory of the comma category Top ↓ Top. Given a B-bundle E with
projection π and a B̃-bundle Ẽ with projection π̃, a bundle morphism is given by a
continous map h : E → Ẽ together with a continuous map h0 : B → B̃ between the
bases such that h0 ◦ π = π̃ ◦ h; in this case, one speaks of a map h “over” a map h0.

Having a map h over a map h0, there is for each basis point p ∈ B a point p̃ = h0(p) ∈ B̃ d
yielding the fiber inclusion h(Ep) ⊆ Ẽp̃. Conversely, every continous map h : E → Ẽ with this

fiber inclusion property determines the basis map h0 : B → B̃ uniquely via h0(p) = π̃h(Ep),

but note that h0 need not be continuous in general. At any rate, we may describe a morphism

between a B-bundle E and a B̃-bundle Ẽ as a continuous map h : E → Ẽ that fulfills the fiber

inclusion property such that the induced basis map is continuous. u
A section (sometimes also called “cross section”) of a B-bundle E is a continuous map

σ : B → E such that π ◦ σ = 1B. The geometric motivation for the name (meaning “cut”
in Latin) becomes evident in simple cases like a cylinder E = S1 × [0, 1], considered as a
bundle over the basis B = S1. (The terminology is also consistent with the generic case:
In any category, if one has two morphisms π : E → B and σ : B → E with π ◦ σ = 1B, one
calls π a left inverse or a retraction for σ and dually σ a right inverse or a section for π.)

In a general B-bundle E, it is not always possible—or at least not easy—to find a
section σ : B → E. One is therefore often content with a local section, meaning a map
σ : U → E that is a section of EU . Note that such sections form a sheaf—and this is
actually the motivation for the name “section” used in sheaf theory (see at the beginning
of Subsection 1.3.2). Certain powerful topological tools (like partitions of unity) allow the
construction of a global section (meaning a section σ : B → E) from a collection of local
sections covering B.
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One important example of a bundle is the following. For a given topological space F ,
we consider E = B × F as a B-bundle, using the canonical projection π : B × F → B
acting by π(p, v) = p. We call E the straight B-bundle with typical fiber F .

2.29 Definition The B-bundle E is called locally straight if every basis point p ∈ B has
a neighborhood U such that EU is isomorphic to a straight B-bundle.

¬ F = @-1, 1 D

�
E = Möbius Band

¯ Π

¬ B = S1

Figure 2.1: The Möbius Band

In detail, there is for each such neighbor-
hood U of the basis point p a homeomorphism
ϕ : EU → U × F with π(ϕ−1(p, v)) = p for all
p ∈ U and v ∈ F ; such a map is called a
bundle chart of E over U . Obviously we can
write ϕ = (π, ϕF ) with a continuous fiber chart
ϕF : EU → F . The fibers F need not be the
same for different bundle points p, but we have
always F ∼= Ep. If all fibers are indeed homeo-
morphic to a fixed F , we call E locally straight
with typical fiber F . (This terminology is con-
sistent with the case of a globally straight bun-
dle E = B × F , where each fiber is given by
{p} × F ∼= F .)

Note the analogy to manifolds here: Again
we have maps (bundle charts) for locally
“pulling down” a complicated structured (twist-
ing fibers in a B-bundle E) to a simple reference
object (a straight B-bundle). The point is that even though E is locally straight, it may
still be globally twisted. Think of the Möbius band with basis S1 and fiber [−1, 1], as
visualized in Figure 2.1.

In analogy to manifolds, we can also introduce a bundle atlas for a locally straight
bundle as a collection of bundle charts whose domains cover the total space (or equivalently
their projections cover the basis space). Hence we can read Definition 2.29 as characterizing
the locally straight bundles as the ones having an atlas. Again similar to manifolds, a
bundle structure is a maximal bundle atlas (with respect to set inclusion), containing all
admissible bundle charts. In fact, we have not yet restricted the transitions—which we will
do by the structure group to be introduced below—so that all bundle charts are admissible
at this point.

On a locally straight B-bundle E, local sections σ : U → E always exist. Moreover,
they are in bijective correspondence with the continuous maps σ̃ : U → F , which we
might call fiber maps: Given an admissible bundle chart ϕ : EU → U × F , we obtain
fiber maps from local sections via σ̃(p) = ϕF (σ(p)) and local sections from fiber maps via
σ(p) = ϕ−1(p, σ̃(p)).

Note that the homeomorphism type of Ep is locally constant in every B-bundle E, so
we have a typical fiber at least for every connected component of B. In particular, all
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bundles over a connected basis B do have a typical fiber F ∼= Ep for all p ∈ B. Hence it is
only a small step from locally straight bundles to fiber bundles.

2.30 Definition A fiber bundle is a locally straight bundle with a typical fiber.

Let us return to the analogy with manifolds. The crucial idea of a Cr manifold is that
every point has a neighborhood that is locally mapped to an open set of Rn in such a way
that all the transitions are Cr. One can impose similar restrictions on the bundle charts
of a fiber bundle.

Recall that every B-bundle E comes with a bundle atlas, which can be extended to
the unique bundle structure consisting of all admissible bundle charts—just like in the
manifold case. If E is a fiber bundle with typical fiber F , every admissible bundle chart
can be cast into a map ϕ : EU → U × F . Now let ψ : EV → V × F be another admissible
bundle chart with non-empty overlap W = U ∩ V . Then the bundle transition from ϕ to
ψ is given by the homeomorphism

1ψϕ = ψϕ−1 : W × F →W × F.

Since 1ψϕ is a bundle isomorphism, we have

1ψϕ(p, v) = (p, 1′ψϕ(p) v) with 1′ψϕ(p) : F → F

being a unique homeomorphism depending on the basis point p; let us call 1′ψϕ(p) the
fiber transition at p from ϕ to ψ. (Note that, for the moment, 1′ψϕ(p) is just a convenient
notation for a certain map depending on the chosen charts ϕ and ψ; it has nothing to do
with derivatives, which are not even defined when the fiber is a plain topological space!
But in the special case of tangent bundles on a manifold, 1′ψϕ(p) will indeed be the good
old transition Jacobian: the derivative of the coordinate change 1ψϕ around p.)

The fiber transitions obviously form a group. Taking any homeomorphism γ of F and
any open set W of B, one can build admissible bundle transitions (1W , γ), from any chart
ϕ with domain W to its corresponding chart (1W , γ) ◦ ϕ with the same domain W . Hence
the group of fiber transitions is given by all homeomorphisms of F . In order to restrict
the possible transitions in the bundle, we must prescribe a smaller subgroup G. Usually
one thinks of G not as a subset of the full homeomorphism group of F , but as a separate
group acting effectively on F . Moreover, one also specifies a topology on G such that G
can be required to act continuously on F ; this is sometimes convenient for fine-tuning the
admissible transitions. Let us summarize these ideas.

2.31 Definition Let E be a fiber bundle over B with typical fiber F and with a topological
group G acting effectively on F as a group of homeomorphisms. Then E is said to admit
the structure group G if there is a continuous map Θψϕ : W → G for any two admissible
charts ϕ and ψ with overlap W ⊆ B such that 1′ψϕ(p) v = Θψϕ(p) · v for all p ∈ W and
v ∈ F .
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For the sake of a readability, we identify the homeomorphism 1′ψϕ(p) : F → F and
the group element Θψϕ(p) ∈ G, using the former for the latter. A fiber bundle with
structure group G will briefly be called a G-structured bundle. Just as with manifolds
constructed via patchwork (see Subsection 1.2.3), the fiber transitions from G satisfy the
three transition conditions, thus making the gluing relation an equivalence (for all base
points in the appropriate overlaps): reflexivity Θϕϕ = 1F , symmetry ΘϕψΘψϕ = 1F , and
transitivity Θχϕ = Θχψ Θψϕ. As in Subsection 1.2.3, the third condition—also named the
“cocycle condition” in Čech cohomology—implies the other two.

The geometric significance of the structure group is to impose various symmetry con-
straints on how the fibers can by glued together. As an example, consider the Möbius
band (Figure 2.1), an S1-bundle with typical fiber F = [−1, 1]. One can impose Z2 as a
structure group on it because running 360◦ around the band one will end up on the same
fiber with opposite orientation, corresponding to a fiber transition F → F that flips the
interval F via v 7→ −v.

Everything which we have done up to now (bundles, bundle morphisms, sections, fiber
bundles, structure groups) can be specialized to the category of manifolds: Just replace
all topological spaces by manifolds and all continuous functions by differentiable ones. So
a differentiable fiber bundle is a manifold E based on a manifold B with a manifold F for
its fiber, and the projection π : E → B would be a differentiable map commuting with
the (differentiable!) canonical projection B × F → B. A structure group for E would be
required to be a Lie group with a differentiable action on F , inducing differentiable fiber
transitions.

Before proceeding to the next subsection on vector bundles (bundles with linear fibers
and linear structure groups—as we shall see soon), let us mention a few other special cases
of fiber bundles.

• In complex analysis, covering spaces are an important tool for classifying analytic
continuations. We can view them as fiber bundles with discrete fibers.

• If the fibers have a free and transitive group action, one speaks of a principal bundle.
In this case, the fiber itself serves as a structure group.

• The n-dimensional disk bundle has as fiber a disk Dn = {x ∈ Rn | ‖x‖ ≤ 1}. Its
structure group is often required to be a subgroup of the orthogonal group on Rn.

• Analogously, the n-dimensional sphere bundle has a sphere Sn = {x ∈ Rn | ‖x‖ = 1}
for its fiber, and again the transitions are often restricted to rotations. Disk bundles
and sphere bundles are used for constructing the Thom space of a vector bundle;
see [2353].

A few words on the terminology in the theory of fiber bundles and vector bundles. First of d
all, we must confess that to some degree we have introduced our own terms here because there
seems to be no global agreement on how to name various key concepts of the theory.
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For example in [23157], a bundle E over B is called a “topological space over” B, without
mentioning the projection π; whereas in [7106], they call π a “bundle projection”, ignoring the
total space E. Our own usage of the “bundle” is similar to [58].

Speaking of a bundle E over B suggests a rough parallel to vector spaces V over a field K.
In this comparision, V corresponds to E and K to B, so “vectors” are like “bundle points”
and “scalars” like “basis points”, while the heterogeneous operation · : V ×K → V has a vague
counterpart in the projection π : E → B. Moreover, the brief name “B-bundle” corresponds to
the common term “K-vector space”. Generalizing the analogy from vector spaces over a field K to
modules over a commutative ring K, a straight B-bundle B×F with typical fiber F corresponds
to a free K-module KF with generators F .

The term “(locally) straight bundle” is also nonstandard; the usual name is “(locally) trivial
bundle”. We prefer the more explicit term that refers to the geometric contents of this concept:
Calling something trivial just provokes the question: trivial with respect to what? The expres-
sions “fiber chart” and “fiber map” are also new (there seem to be no words for them in the
literature). Note also that the pictorial terminology of “slices” is uncommon, the usual term
being “restriction”.

For the transition of bundle charts, the terminology in the literature is again undecided. Some
people use the name “transition function” for what we called “bundle transition”, some use it for
our “fiber transition”. We find it more useful to distinguish them in a natural way by referring to
what they act on (either on the “bundle” in its locally isomorphic manifestation or on the fiber).

Regarding structure groups, we have a small problem with our terminology of B-bundles: In

the literature, a fiber bundle with structure group G is sometimes called a “G-bundle”. This

would conflict with our notion of B-bundles since it may not always be clear from the context

(at least a check would be distracting) that B is a basis space and G a group. But we may

instead speak of a “G-structured B-bundle”, roughly analogous to speaking of an “n-dimensional

K-vector space”. u
2.3.2 Vector Bundles

As announced in the previous section, we are especially interested in those fiber bundles
that have linear fibers and linear structure groups (subgroups of the corresponding general
linear group).

2.32 Definition An n-dimensional vector bundle is a fiber bundle with typical fiber an
n-dimensional vector space V and linear fiber transitions V → V .

Obviously (recall we are only dealing with real vector spaces), we may replace V by Rn

if we choose a basis. In particular, a one-dimensional vector bundle (also known as a line
bundle) may be fibered by R. For general vector bundles (like a Lie algebra or a space of
algebraic tensors), however, there may not always be a natural basis.

If E and Ẽ are vector bundles over the same basis B, a vector bundle morphism is a
bundle morphism h : E → Ẽ restricting to linear maps on all fibers (then h is sometimes
called a “fiberwise linear” map). This means the restriction h : Ep → Ẽp is a linear map
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for every p ∈ B. We observe that, with these morphisms, the vector bundles form a (non-
full) subcategory of the fiber bundles. If Ẽ is a vector bundle over a different basis B̃, a
morphism h between E and Ẽ is a fiberwise linear morphism of fiber bundles. This makes
the vector bundles (over arbitrary bases) a subcategory VecBnd of the fiber bundles (over
arbitrary bases).

Just as with fiber bundles, one may specialize to the category of Cr manifolds, defining a
differentiable vector bundle as a vector bundle that is at the same time a differentiable fiber
bundle (and hence all the more a manifold). So we have a manifold with a differentiable
projection to a basis which is also a manifold, and the structure group is a Lie group. The
corresponding morphisms are of course also assumed to be differentiable maps; let us write
this category as VecBndr, with the understanding VecBnd = VecBnd0.

Before we proceed to our most important example—the cotangent and tangent bundle
of a manifold—let us mention that one can use the basis space for transferring its topology
(in case the basis is a manifold, also its differentiable structure) to the total space, thus
building a vector bundle (in case the basis is a manifold, even a differentiable vector bundle)
on what is called a “vector prebundle” in [829].

More specifically, a vector prebundle is given as follows: We have a set E, a basis space
B, a surjection π : E → B, an n-dimensional vector space V , and an atlas A of prebundle
charts ϕ : EU → U × V . The latter condition has the expected meaning:

• The U ⊆ B are open sets such that the slices EU cover E.

• Each ϕ is a bijection with π(ϕ−1(p, v)) = p for all p ∈ U and v ∈ V .

• The bundle transitions 1ψϕ : U × V → U × V are homeomorphisms.

• The induced fiber transitions 1′ψϕ(p) : V → V linear.

Note that A is then a bundle atlas for E except that E has no topology, so we cannot speak
of ϕ as a homeomorphism. But we can endow E with a topology in the same manner as
in Proposition 1.11, namely by requiring all prebundle charts to be homeomorphisms (and
thus charts). Then E becomes indeed a vector bundle with continous projection π and
bundle atlas A.

Now assume that E is what could be called a differentiable prevector bundle, meaning
that—in addition to the above—the bundle transitions 1ψϕ : U×V → U×V are Cr with B
an m-dimensional Cr manifold (this includes of course the case when the bundle transitions
are smoother than B). The first condition can also be formulated [3142] by requiring that
all group operations

U → GL(V ), p 7→ 1′ψϕ(p)

are Cr. Now each bundle chart ϕ : EU → U × V may be followed by a B-chart U → A
going into an open set A ⊆ Rm and a component chart V → Rn corresponding to a fixed
basis in V . Combining these, one obtains an E-chart Φ: EU → A×Rn making E into an
(m+ n)-dimensional Cr manifold. Hence E is a differentiable vector bundle.
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One may even go one step further [41157], starting without the total space E and the
prebundle charts ϕ : EU → U ×V . One starts from an open cover (Ui | i ∈ I) of a Cr basis
manifold B having at each point p ∈ B a group of fiber transitions Θji(p) : V → V that
fulfills the cocycle condition ΘkjΘji = Θki and induces a Cr map Θ: Ui ∩ Uj → GL(V ).
Then one can construct the total space E as a Cr manifold, along with a Cr bundle atlas,
in a manner similar to the patchwork construction of Subsection 1.2.3.

As announced at the beginning of this section, we can now summarize the cotangent
and tangent spaces in one convenient data structure—a vector bundle, utilizing the above
construction based on a vector prebundle.

2.33 Definition The cotangent and tangent bundle of an n-dimensional Cr manifold M
with r > 0 are respectively given by the disjoint unions

T ∗M =
⊎

p∈M

T ∗
pM and TM =

⊎

p∈M

TpM

over the basis M with the natural bundle projections.

Note that T ∗M and TM are the total spaces of the vector bundle. By the definition of
disjoint union, it consists of pairs (p, d) and (p, v) with basis point p ∈M and fiber vectors
d ∈ T ∗

M and v ∈ TM . Then the natural bundle projections T ∗M → M and TM → M
operate by (p, d) 7→ p and (p, v) 7→ p, respectively.

Next we introduce the bundle charts of the cotangent and tangent bundle. Let A be a
differentiable structure on M and take a chart x ∈ A with domain U ⊆M and coordinate
patch A ⊆ Rn.

One slight technicality has to be addressed at this point. Up to now we have always
used charts centered at a fixed point p; for bundle charts we have to relax this restriction
since we need the components for the (co)vectors in a whole neighborhood of a point. Since
the components are defined in terms of the rate 〈|〉 at a fixed point p, it suffices to generalize
〈|〉 to non-centered charts. This is done in the obvious way: Let f be any function germ
at p, and let c be any curve germ through p = c(t). Then we set 〈f |c〉 = 〈f |c̄〉, where c̄ is
the centered curve germ through p defined by c̄(τ) = c(τ − t). And if x is any chart with
x(p) = x0, we define

〈f |x−1〉 = (f ◦ x−1)′(x0) = 〈f |xi〉 δ
i,

〈x|c〉 = (x ◦ c)′(t) = 〈xi|c〉 δi

for the rate of a chart along a curve and the rate of a function along a parametrization.
Using this generalized rate, a cotangent vector d = [f ]∼ ∈ T ∗

pM has a again the components
(d|x = 〈f |x−1〉 and a tangent vector v = [c]∼ ∈ TpM the components 〈x|c〉. Now we can
define the bundle charts.
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The map

(x| : T ∗MU → U ×Rn

(p, d) 7→ (p, (d|x )

is a bundle chart of T ∗M . We write

(A| = {(x| | x ∈ A}

for the collection of bundle charts.

The map

|x) : TMU → U ×Rn

(p, v) 7→ (p, |v)x )

is a bundle chart of TM . We write

|A) = {|x) | x ∈ A}

for the collection of bundle charts.

As explained above, (A| and |A) turn T ∗M and TM into differentiable vector bundles,
if we can ensure certain conditions: If x̄ : Ū → Ā is another chart with overlap W = U ∩ Ū ,
the bundle transitions come out as follows. For any basis point p ∈M , the transformation
formulae (2.5) yield

1(x̄|(x|(p, a) = (p, a ·
∂x

∂x̄
(x̄0)) and 1|x̄)|x)(p, h) = (p,

∂x̄

∂x
(x0) · h)

for all a ∈ Rn and h ∈ Rn; here we have written x̄0 = x̄(p) and x0 = x(p). In other words,
we have

1′(x̄|(x|(p) a = a 1′xx̄(x̄0) and 1′|x̄)|x)(p) h = 1′x̄x(x0) h

for the corresponding fiber transitions. Note that these maps are indeed linear and the
group operations

W → GL(T ∗
pM), p 7→ 1′(x̄|(x|(p) and W → GL(TpM), p 7→ 1′|x̄)|x)(p)

are Cr−1. Hence we may conclude that T ∗M and TM are 2n-dimensional differentiable
vector bundles of class Cr−1.

Finally, let us interpret the codifferential and differential as appropriate vector bundle
morphisms. Let N be another manifold and let Φ: M → N be a sufficiently smooth map
(and a bijection in case of the codifferential).

The map

d∗Φ: T ∗N → T ∗M

(Φ(p), d̄) 7→ (p, (d∗pΦ) d̄)

is called the codifferential of Φ.

The map

dΦ: TM → TN

(p, v) 7→ (Φ(p), (dpΦ) v)

is called the differential of Φ.

Both d∗Φ and dΦ are obviously vector bundle morphisms. Moreover, the observations
at the end of Subsection 2.2.1 can now be reformulated as follows. We have the generalized
uniformity relation

d∗ 1M = 1T ∗M and d 1M = 1TM
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and the generalized chain rule

d∗(Φ ◦ Ψ) = d∗Ψ ◦ d∗Φ and d(Ψ ◦ Φ) = dΨ ◦ dΦ

if Ψ is a map (of the same type) from N into another manifold. Writing Manr for the cate-
gory of Cr manifolds (with r > 0), we may thus view the codifferential and the differential
respectively as a cofunctor and functor

d∗ : Man′
r → VecBndr−1 and d : Manr → VecBndr−1,

just as promised at the outset of this section. There is just one catch in this apparent
symmetry (a situation that will reappear when we consider pushforward and pullback
of tensors in Subsection 2.3.4): As mentioned above, the codifferential works only for
bijections, so the category Manr must be restricted to Cr diffeomorphisms; this is what
the notation Man′

r tries to suggest.

2.3.3 The Tensor Bundles

A differential form and a vector field assign respectively a cotangent and a tangent vector
to each point of a manifold. In this subsection, we make this more precise by using the
construction of the (co)tangent bundle from the previous subsection. After recalling some
facts of the tensor product from Linear Algebra, we discuss the generalization to tensor
fields, which assign to each point a tensor.

Let M be an n-dimensional Cr manifold with r ≥ 1. Then we know from the previous
subsection that the (co)tangent bundle is a Cr−1 manifold with a Cr−1 projection.

A differential form on M is a section

ω : M → T ∗M

of the contangent bundle, meaning
ω(p) ∈ T ∗

pM for all p ∈M .

A vector field on M is a section

ξ : M → TM

of the tangent bundle, that is, meaning
ξ(p) ∈ TpM for all p ∈M .

More precisely, we speak of Cs differential form or vector field if the section is a Cs map
where s ≤ r − 1. For the sake of symmetry, differential forms are sometimes also called
covector fields.

Now we discuss how differential forms and vector fields can be represented using local
coordinates. Let A be a differentiable structure on M and take a chart x ∈ A with domain
U ⊆ M and coordinate patch A ⊆ Rn. Then for every point p ∈ U , we have respectively
the natural

cobasis dx1(p), . . . , dxn(p) of T ∗
pM and basis dx1(p), . . . , dxn(p) of TpM.

So for any differential form and vector field there exist respectively component functions
v1, . . . , vn and v1, . . . , vn on U such that we obtain a local representation

ω(p) = (p, vi(p) dx
i(p)) and ξ(p) = (p, vi(p) dxi(p)).
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It is clear that the differential form or vector field is Cs if and only if the corresponding
component functions are Cs.

Let x̄ : Ū → Ā be another chart with overlap W = U ∩ Ū . Then we know from (2.6)
the transformation laws

v̄i =
∂xj

∂x̄i
vj and v̄i =

∂x̄i

∂xj
vj,

for the components of a (co)tangent vector. Recall that here ∂x̄/∂x denotes the transition
Jacobian from x to x̄ and ∂x/∂x̄ its inverse. From these equations we immediately obtain
the transformation laws

v̄i(p) =
∂xj

∂x̄i
(x̄0) vj(p) and v̄i(p) =

∂x̄i

∂xj
(x0) v

j(p)

for the component functions, writing again x̄0 = x̄(p) and x0 = x(p).
We recall some facts on the tensor product. Let U and V be K-vector spaces. Then

we know from Linear Algebra [32602] that there exists a K-vector spaces U ⊗ V , called a
tensor product of U and V , together with a bilinear map

⊗ : U × V → U ⊗ V

having the following universal property: For any bilinear map f : U × V → W with W
being a K-vector space, there exists a unique K-linear map f̃ : U ⊗ V → W such that

f = f̃ ◦ ⊗.

The tensor product is unique up to isomorphism. Moreover, if U and V are finite-
dimensional with bases

(ei)1≤i≤m and (fj)1≤j≤n,

then
(ei ⊗ fj)1≤i≤m,1≤j≤n

is a basis of U ⊗ V , so that dimU ⊗ V = dimU · dimV . Considering multilinear instead
of bilinear maps, one can analogously define a tensor product of finitely many K-vector
spaces.

2.34 Proposition For finite-dimensional vector spaces, a tensor product of U and V is
given by the K-vector space L2(U∗, V ∗;K) of bilinear maps from U∗ × V ∗ to K.

Proof. To show that it is a tensor product, we have to construct a bilinear map

⊗ : U × V → L2(U∗, V ∗;K)

satisfying the universal property. For any (u, v) ∈ U × V , we define a bilinear map

u⊗ v : U∗ × V ∗ → K
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by
u⊗ v(u∗, v∗) = u∗(u) v∗(v).

It is easy to see that ⊗ is a bilinear map. Let (ei) and (fj) be respectively bases for U and
V with dual bases (ek) and (f l). Then

ei ⊗ fj(e
k, f l) = ei(e

k) fj(f
l) = δki δ

l
j ,

so (ei ⊗ fj) is a basis of L2(U∗, V ∗;K). Let now f : U × V → W be a bilinear map, given
by its values

f(ei, fj) = wij ∈W

on the tuples (ei, fj) of basis vectors. Then f̃ defined by

f̃(ei ⊗ fj) = wij

obviously satisfies f = f̃ ◦ t, and we have shown that L2(U∗, V ∗;K) is indeed a tensor
product of U and V . �

Analogously one can show that a tensor product for finite-dimensional K-vector spaces
V1, . . . , Vα is given by the K-vector space of multilinear maps from V ∗

1 × · · · × V ∗
α to K,

denoted by
Lα(V ∗

1 , . . . , V
∗
α ;K).

Moreover, by identifying a vector space V with its bidual V ∗∗, we see that a tensor product
of U∗ and V ∗ is given by L2(U, V ;K). Thus we have

U∗ ⊗ V ∗ = L2(U, V ;K) and U ⊗ V = L2(U∗, V ∗;K).

Let V be a finite dimensional K-vector space of dimension n, and α, β positive integers.
The K-vector space T α,β(V ) of tensors of valence

[
α
β

]
and rank α + β on V is a tensor

product of β copies of V ∗ and α copies of V , so that

T α,β(V ) = V ∗ ⊗ · · · ⊗ V ∗

︸ ︷︷ ︸

β

⊗V ⊗ · · · ⊗ V
︸ ︷︷ ︸

α

= Lα+β(V, . . . , V
︸ ︷︷ ︸

β

, V ∗, . . . , V ∗

︸ ︷︷ ︸

α

;K).

Elements of T α,β(V ) are also called (α, β)-valent tensor or contravariant of order α and
covariant of order β.

Let (ei) be a basis of V and (ej) the corresponding dual basis. Then we know that a
basis of T α,β(V ) is given by

ej1 ⊗ · · · ⊗ ejβ ⊗ ei1 ⊗ · · · ⊗ eiα,

so dimT α,β(V ) = nα+β and any tensor t ∈ T α,β(V ) can be written uniquely as

t = ti1,...,iαj1,...,jβ
ej1 ⊗ · · · ⊗ ejβ ⊗ ei1 ⊗ · · · ⊗ eiα
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with an array ti1,...,iαj1,...,jβ
of components in K.

If (ēı̄) is another basis of V with the transition matrix (cı̄i) from (ei) to (ēı̄), we have

ei = cı̄i ēı̄.

Let (cj̄) denote the inverse of the transition matrix. (Precisely speaking, the transition
matrix itself is an object c− and its inverse an object c−. In connection with these objects,
one imposes the index convention that barred indices are always to be used under the barred
positions of these matrices, while unbarred indices must only be used in their unbarred
positions. Hence one may leave out the overbars on the indices in barred positions—
which would anyway look ugly from the typographic perspective.) Then we know that the
corresponding dual basis (ē̄) for (ēı̄) transforms with the inverse transpose of the transition
matrix, so that the relation

ej = cj̄ ē
̄.

is fulfilled.
By multilinearity of the tensor product we obtain the transformation law

t̄ ı̄1,...,̄ıᾱ1,...,̄β = cj1̄1 · · · c
jβ
̄β c

ı̄1
i1
· · · cı̄αiα t

i1,...,iα
j1,...,jβ

(2.13)

for the components of a tensor.
Interpreting t as multilinear function

t : V × · · · × V
︸ ︷︷ ︸

β

×V ∗ × · · · × V ∗

︸ ︷︷ ︸

α

→ K,

we have
t(ek1 , . . . , ekβ , e

l1 , . . . , elα) = tl1,...,lαk1,...,kβ
,

and for
v1 = vk11 ek1 , . . . , vβ = v

kβ
β ekβ and d1 = d1

l1
el1 , . . . , dα = dαlαe

lα

we obtain by multilinearity

t(v1, . . . , vβ, d
1, . . . , dα) = tl1,...,lαk1,...,kβ

vk11 · · · v
kβ
β d1

l1 · · ·d
α
lα .

Let us collect here some additional notes about the tensor product ofK-vector spaces V ∼= Km d
and W ∼= Kn. Besides the “official” way of introducing the tensor product V ⊗W by way of its
universal property (leading to V ⊗W as a suitable quotient of the space K(V×W ), a construction
that generalizes to arbitrary commutative rings K), there are three alternative definitions:

Basis-free: As discussed in the text, one can set V ⊗W = L2(V ∗,W ∗;K)

Basis-invariant: One can introduce V ⊗W in a fasion similar to the component spaces intro-
duced at the end of Subsection 2.1.3.

Basis-depenent: If x1, . . . , xm and y1, . . . , yn are bases respectively for V and W , we can also
interpret V ⊗W as a suitable space of the noncommutative polynomials.
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Each of these constructions of V ⊗W must also provide an appropriate definition for the universal
map ⊗ : V ×W → V ⊗W , and we shall see that this is indeed the case.

Depending on how the spaces V and W are given (and what one wants to do with them), one
will give preference to one or the other. The basis-free definition is best suited if V and W are
given in the usual way, namely as sets with operations like +: V × V → V and · : R × V → V ,
subject to certain well-known axioms. If V and W are given as torsors (see Section 0.2), however,
one would naturally use the basis-invariant definition. And if V and W come with specific bases,
the bases-dependent definition is of course most convenient.

We have already discussed the basis-free definition. We define V ⊗W = L2(V ∗,W ∗;K) with
the universal map ⊗ : V ×W → V ⊗W is obviously by v ⊗ w (v∗, w∗) = v∗(v)w∗(w). See the
text above for a more detailed treatment.

The other extreme is the basis-dependent definition. Assume V has the basis (x1, . . . , xm)
and W the basis (y1, . . . , yn). Then we may view both V and W as subspaces of the noncom-
mutative polynomial ring K〈x1, . . . , xm, y1, . . . , yn〉, namely as the corresponding linear spans
V = K〈x1, . . . , xm〉 and W = K〈y1, . . . , yn〉. Then we may set

V ⊗W = V ·W ⊆ K〈x1, . . . , xm, y1, . . . , yn〉,

where · denotes the usual product of noncommutative polynomials, which sereves also as the
universal map · : V ×W → V ⊗W .

This sheds more light on the intuitive meaning of tensors: They are just the noncommutative
analogs of mixed homogeneous polynomials of degree two (also called bilinear forms!), and this
can be continued. For any vector space V , its tensor algebra is given by the direct sum of
arbitrarily high tensor products V ⊗i = V ⊗ . . .⊗ V

︸ ︷︷ ︸

i

as

T(V ) =

∞⊕

n=0

V ⊗i,

so we have T(V ) = K〈x1, . . . , xm〉 where (x1, . . . , xm) is again a basis for V = K〈x1, . . . , xm〉. If
(y1, . . . , yn) is a basis for the vector space W = K〈y1, . . . , yn, we see that

V ⊕W = K〈x1, . . . , xm, y1, . . . , yn〉

so V ⊗W ≤ T(V ⊕W ) is just that part of the tensor algebra that combines exactly one “inde-
terminate” from V with one “indeterminate” from W . As we said before: Mixed homogeneous
polynomials of degree two.

For the basis-invariant definition, we use the language of torsors (see Section 0.2). So let V
and W be contravariant component spaces with “abstract bases” B and C with dimensions m
and n, respectively. Then every v ∈ V is an equivariant map v : B → Rn and equally every
w ∈ W an equivariant map w : C → Rn. Now we consider the “abstract bases” B × C and the
component array Rm×n as torsors over GLm(R) × GLn(R). For the component array, we have
to view m = {0, 1, . . . ,m − 1} and n = {0, 1, . . . , n − 1} in their ordinal character. On B × C,
the action of GLm(R) × GLn(R) is given by the torsor product. For M ∈ Rm×n we define the
action of (S, T ) ∈ GLm(R) ×GLn(R) by

(S, T ) ·M = S⊤MT ;
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note that this is just the usual transformation rule for the components of a bilinear form [32528].
We can now define V ⊗W to be the set of all equivariant maps between the GLm(R)×GLn(R)
torsors B × C and Rm×n. This gives a vector space of dimension mn, as one may easily check.

The universal map ⊗ : V ×W → V ⊗W is constructed as follows. Given two equivariant
maps v : B → Rm and w : C → Rn, we construct the map

v ⊗ w : B × C → Rm×n,

(β, γ) 7→
(

(i, j) 7→ vi(β)wj(γ)
)

so that v⊗w behaves just like a bilinear form should behave. Hence v⊗w is indeed an equivariant
map v ⊗w ∈ V ⊗W .

Of course, one need not stop at tensoring two vector spaces; the same approach works for
defining V1 ⊗ · · · ⊗ Vα, yielding tensors of valence

[0
α

]
. In fact, one can immediately introduce

tensors of arbitrary mixed valence
[α
β

]
, and this is where the torsor construction shows its benefits

(assuming V1 = . . . = Vα for simplicity): The construction is completely symmetric in co- and
contravariant components. Indeed, assume a dual pair of vector spaces (V ∗, (|), V ) is given as the
space of equivariant maps from a set B of “abstract bases” to Rn and to Rn, describing the co-
and contravariant vectors, respectively. Then a tensor of valence

[
α
β

]
is just an equivariant map

τ : B → Rnα×nβ ,
where

nα =
{

κ | κ : {0, 1, . . . , α− 1} → {0, 1, . . . , n− 1}
}

and likewise nβ are to be understood in the sense of ordinals. The action of a transition matrix
c = c− ∈ GLn(R) on a component array t ∈ Rnα+nβ results in another component array c · t =

t̄ ∈ Rnα+nβ given by

t̄ ı̄1,...,̄ıᾱ1,...,̄β
= cı̄1i1 · · · cı̄αiα c

j1
̄1 · · · c

jβ
̄β
ti1,...,iαj1,...,jβ

,

which is just the tensor transformation law (2.13), again using c− for the inverse of c− in the way

described above. u
We can now apply the construction of the tensor product to the tangent space of a

manifold and define tensor fields, which assign to each point of the manifold a tensor. We
first have to generalize the definition of the (co)tangent bundle to tensor bundles. Recall
that

T α,βp M := T ∗
pM ⊗ · · · ⊗ T ∗

pM
︸ ︷︷ ︸

β

⊗TpM ⊗ · · · ⊗ TpM
︸ ︷︷ ︸

α

is an nα+β-dimensional vector space.

2.35 Definition The tensor bundle of valence
[
α
β

]
of an n-dimensional Cr manifold M

with r > 0 is given by the disjoint union

T α,βM =
⊎

p∈M

T α,βp M

over the basis M with the natural bundle projection.
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Similar to Subsection 2.3.2, we can turn T α,βM into (n + nα+β)-dimensional differen-
tiable vector bundle over M of class Cr−1. Note also that

T 1,0M = TM and T 0,1M = T ∗M

recovers the (co)tangent bundle.
A tensor field of valence

[
α
β

]
on M is a section

τ : M → T α,βM

of the tensor bundle T α,βM , meaning τ(p) ∈ T α,βp M for all p ∈ M . More precisely, we
speak of Cs tensor field if the section is a Cs map where s ≤ r − 1.

We can represent tensor fields using local coordinates, as before differential forms and
vector fields. Let x : U → A be a chart. Then there exist component functions ti1,...,iαj1,...,jβ

on
U such that we obtain a local representation

τ(p) = (p, ti1,...,iαj1,...,jβ
(p) dxj1 ⊗ · · · ⊗ dxjβ ⊗ dxi1 ⊗ · · · ⊗ dxiα),

where we omit the dependence on p in the basis vectors. It is clear that the tensor field is
Cs if and only if the corresponding component functions are Cs.

Let x̄ : Ū → Ā be another chart with overlap W = U∩Ū . Then from the transformation
laws (2.6) for the (co)tangent vectors and (2.13) for the components of a tensor, we obtain
the transformation laws

t̄ ı̄1,...,̄ıᾱ1,...,̄β =
∂xj1

∂x̄̄1
· · ·

∂xjβ

∂x̄̄β

∂x̄ı̄1

∂xi1
· · ·

∂x̄ı̄α

∂xiα
ti1,...,iαj1,...,jβ

(2.14)

for the component functions of a tensor, where everything depends on p.
The set of all sections of the tensor bundle of valence

[
α
β

]
is denoted by T α,βM . Note

that T 0,0M is just the sheaf of differentiable functions on M ; one may check that every
T α,βM is also a sheaf, accordingly called the sheaf of tensor fields of valence

[
α
β

]
. The

special cases of vector fields and differential forms will be denoted by ΞM = T 1,0M and
ΩM = T 0,1M , respectively.

2.3.4 Pullback and Pushforward

We now discuss the pullback and pushforward of tensor fields for a differentiable map.
Again we first consider the situation in Linear Algebra, so let A : V →W be a linear map
between finite dimensional K-vector spaces. The dual map

A∗ : W ∗ → V ∗

is defined by w∗ 7→ w∗ ◦A. Note that W ∗ = T 0,1(W ) and V ∗ = T 0,1(V ). We can generalize
this idea. The dual of a linear map induces the pullback on covariant tensors of order β,
which is again denoted by A∗. More precisely, we have the linear map

A∗ : T 0,β(W ) → T 0,β(V )
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defined by
ej1 ⊗ · · · ⊗ ejβ 7→ A∗ej1 ⊗ · · · ⊗ A∗ejβ .

Analogously, A also induces a map

A∗ : T α,0(V ) → T α,0(W ),

defined by
ei1 ⊗ · · · ⊗ eiα 7→ Aei1 ⊗ · · · ⊗ Aeiα

and known as the pushforward on contravariant tensors of order α.
If A is an isomorphism, we can define respectively the pushforward of covariant tensors

of order β as the pullback of A−1 and the pullback of contravariant tensors of order α as
the pushforward of A−1. So for an isomorphism A, we can define the pullback

A∗ : T α,β(W ) → T α,β(V )

of mixed tensors by

ej1 ⊗ · · · ⊗ ejβ ⊗ ei1 ⊗ · · · ⊗ eiα 7→ A∗ej1 ⊗ · · · ⊗ A∗ejβ ⊗ A−1ei1 ⊗ · · · ⊗ A−1eiα

and the pushforward
A∗ : T α,β(V ) → T α,β(W )

by

ej1 ⊗ · · · ⊗ ejβ ⊗ ei1 ⊗ · · · ⊗ eiα 7→ (A−1)∗ej1 ⊗ · · · ⊗ (A−1)∗ejβ ⊗Aei1 ⊗ · · · ⊗Aeiα ,

containing the previous definitions as the special cases α = 0 and β = 0.
We can also apply the pullback and the pushforward pointwise to tensor fields along a

diffeomorphism Φ: M → N , where the differential dΦ: TM → TN plays the role of the
linear map A and accordingly the codifferential d∗Φ: T ∗N → T ∗M the role of the dual
map A∗. Writing the arguments of Φ as subscripts for readability, this yields

Φ∗τ : T α,βN → T α,βM

(Φp, τ) 7→ (p, d∗p τ(p))

for the pullback of Φ and

Φ∗τ : T α,βM → T α,βN

(p, τ) 7→ (p, dp τ(Φp))

for the pushforward of Φ. If one takes a chart/parametrization for Φ, one may use the
pullback and pushout of tensors for extracting their components with respect to Φ in
complete analogy to Proposition 2.24.

Let us analyze the important special case of differential forms ω : M → T ∗M and
vector fields ξ : M → TM a bit closer. The diagram below illustrates the definition of the
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pushforwards Φ∗ξ and Φ∗ω as well as the pullbacks Φ∗ξ and Φ∗ω. Up to now we have
always assumed that Φ is bijective. In the diagrams we see that this is actually needed—
except in the one case of Φ∗ω, because we can compute Φ∗ω = d∗Φ ◦ω ◦Φ without inverting
either the map itself or its linearization. In the other three cases, we need the inverse of
either one of them or both. Note that the failure for Φ∗ξ and Φ∗ω is already apparent for
linear maps A as discussed above; but the failure for Φ∗ξ and Φ∗ω only comes from not
being able to “transport” the tensors to the right points of M , a phenomenon that we have
already encountered in the definition of the codifferential on the cotangent bundle.

M N M N

TM TN TM TN

M N M N

T ∗M T ∗N T ∗M T ∗N

//
Φ

��
�
�
�
�
�
�
�
�
�
�

ξ

��

Φ∗ξ

//
Φ

��

Φ∗ξ

��
�
�
�
�
�
�
�
�
�
�

ξ

//

dΦ
//

dΦ

//
Φ

��
�
�
�
�
�
�
�
�
�
�

ω

��

Φ∗ω

��

Φ∗ω

//
Φ

��
�
�
�
�
�
�
�
�
�
�

ω

//

(d∗Φ)−1

//

(d∗Φ)−1

The above diagrams have been drawn in the style of categorical pullbacks and pushforwards d
(actually the latter is then usually termed “pushout”). The idea is that the morphisms represented
by the solid arrows are regarded as given (together with the three objects at their vertices)
while the ones represented by dotted arrows are to be found (together with the missing vertex).
For example, the upper left diagram would describe the pushout square for Φ: M → N and
ξ : M → TM , yielding the “fibered sum” TN , and dΦ: TM → TN for the pushout of Φ along ξ
as well as Φ∗ξ : N → TN for the pushout of ξ along Φ. Likewise, the lower right diagram would
appear as the pullback square for Φ: M → N and (d∗Φ)−1 : T ∗M → T ∗N , yielding the “fibered
product” M , and Φ: M → N for the pullback of (d∗Φ)−1 along ω as well as Φ∗ω for the pullback
of ω along (d∗Φ)−1.

The situation in manifolds is somewhat degenerate as compared with general categories be-
cause the horizontal arrows determine each other: Given a diffeomorphism Φ: M → N , its
differential dΦ: TM → TN and codifferential d∗Φ: T ∗N → T ∗N are fixed (and bijective again);
conversely, one can of course extract Φ from the fiber maps dΦ and d∗Φ. Hence the missing
vertical morphism is the only interesting thing (and thus the only one named “pullback” or
“pushforward”), and it is obtained by the appropriate composition of Φ, its linearization, and
the given (co)vector field.

We recall from Subsection 2.2.1 that the differential and codifferential were constructed by
“pushing forward” curve germs and codifferential by “pulling back” function germs, respectively.
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As the names suggest, there is some connection between these notions of pushforward/pullback
and the ones we have been studying now. As before, we consider manifolds M and N , a diffeo-
morphism Φ: M → N , a vector field ξ : M → TM , and a differential form ω : N → T ∗N . Fixing
a point p ∈M with image q = Φ(p) ∈ N , the pushforward is defined by

(Φ∗ξ)q = (dpΦ) ξp

and the pullback by
(Φ∗ω)p = (d∗pΦ) ωq,

where we have used the conventions ξ(p) = (p, ξp) and ω(q) = (q, ωq), with their analogs on
the left-hand side. As we can see from this, the pushforward of a vector field is a pointwise
application of the differential (a pushforward of a single vector), and the pullback of a covector field
accordingly a pointwise application of the codifferential (a pullback of a single covector). In other
words, the pushforward/pullback of vector/covector fields is a fiberwise pushforward/pullback of
single vectors/covectors.

In order to make these relations more explicit, let us first consider the pushforward. We
know [3188] that there is an integral curve c : R→M locally through p = c(0), meaning

ξ(c(t)) = dtc = (c(t), c′(t))

or briefer ξc(t) = c′(t) for all t ∈ R. (Recall the convention of identifying tangent vectors with
curve differentials as explained after Proposition 2.23.) For a curve point p = c(t), we can then
compute

(Φ∗ξ)q = (dpΦ) [cp]∼ = [(Φ ◦ c)p]∼ = (Φ ◦ c)′(t) (2.15)

for the pushforward of the tangent vectors. Note here the different meanings of the subscripts:
For vector fields, the subscript is defined in the previous paragraph, for the differential it denotes
the base point of the fiber, and for curves it passes to the curve germ. In equation 2.15 we can
see that the effect of the pushforward of a vector field is to “push forward” its integral curves in
the sense of Subsection 2.2.1.

We can express (2.15) more succinctly by introducing the tangent field of a curve c : R→M
as the vector field

C → TC

c(t) 7→ dtc = (c(t), c′(t))

on the submanifold C = c(R) ⊆M . We will write c′ for this vector field (the context will remove
any ambiguity). Then c is an integral curve iff c′ = ξ|C , and equation (2.15) may be restated
as Φ∗ c

′ = (Φ ◦ c)′. Since every curve may be seen as part of some vector field (its restriction),
we can forget about ξ. Then we can summarize equation 2.15 as follows: The tangent field of a
curve is pushed forward to the tangent field of its image curve.

We can do analogous things for the pullback. Given a differential form ω : N → T ∗N , there
is a local potential function, meaning

ω(q) = dqf = (q, f ′(q))
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or briefer ωq = f ′(q) for all q ∈ N in a sufficiently small open region. (Recall the conventions of
identifying cotangent vectors with function codifferentials, also discussed after Proposition 2.23)
Writing the preimage points again p = Φ−1(q), we can now compute

(Φ∗ω)p = d∗pΦ [fq]∼ = [(f ◦ Φ)q]∼ = (f ◦ Φ)′(q) (2.16)

for the pullback of the cotangent vectors. In other words, the pullback of a covector field “pulls
back” its potential functions in the sense of Section 2.2.1.

In order to express equation (2.16) in a compact manner, we introduce the gradient form of
a function f : N → R as the differential form

N → T ∗N

q 7→ d∗qf = (q, f ′(q)).

Again we will write f ′ for this differential form (relying on the context for resolving ambiguity),

so f is a potential function iff f ′ = ω. Now equation (2.16) can be stated as Φ∗f ′ = (f ◦ Φ)′ and

verbalized thus: The gradient form of a function is pulled back to the gradient form of its image

function. u
2.3.5 Various Tensor-like Quantities

Tensors are an incredibly flexible tool for describing many geometrical and physical struc-
tures occurring in practice; this is why one finds a stupendous array of tensor-like objects
with all sorts of (all too often inconsistent) terminology. Here are some examples from
geometry: length, area, volume, angle, curvature, torsion. Here are some examples from
physics: electro-magnetic fields and fluxes, stress and strain, stress-energy in relativity.

For some of these objects, one needs certain variations of tensors. We can try to
put some order into them by looking at their behavior under coordinate changes in an
n-dimensional manifold M . Locally at a point p ∈M , such a coordinate change is always
linear (realized by the transition Jacobian), so we are really studying GL(V ) with V =
TpM . Roughly speaking, we can distinguish the following features in overview (more on
them later):

Translations: It is maybe stupid to mentions this here, but just to make sure: The fact
that we linearize chart transitions by their Jacobian includes a hidden transportation
to the origin of the tangent space. Hence translations are preserved ab initio—the
universe is isotropic.

Rotations: Every tensor-like quantity (even its most fancy variations) should respect
rotations. This is the core idea of all tensors, expressed in their transformation law:
We may violate this law for various special transformations, but never for rotations—
the universe is isotropic.

Dilations: Passing to tensors densities, we may get extra determinant factors when rescal-
ing some of its components. Geometrically, this means that the tensor spreads out
transversally.
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Reflections: Working with pseudo-tensors, we have to flip sign if orientation is reverses;
combined with densities, this brings in determinant factors with absolute value. Ge-
ometrically, the easiest example is the cross product of vectors.

Permutations: For quantitites—think of areas, volumes, angles—that extend in more
than one direction (more precisely: tensors with rank above one), the order of these
directions (more precisely: the order of the V and V ∗ factors in the definition of the
tensor bundle) may have a certain influence: The two extreme cases are: symmetry
(nothing happens) and antisymmetry (the sign flips).

Note that the first four operations are the basic building blocks of GL(V ), while the
last one allows to let GL(V ) act on more than just single vectors. All these choices
are independent of each other, and they are also exhaustive in the following sense: Any
combination leads to some variation T̃ of the plain tensor bundle T , and GL(V ) acts on T̃
by way of a linear representation. Conversely, any representation of GL(V ) can be obtained
in this fashion. (This relation seems to be folklore among mathematical physicists, but
unfortunately I have not found any references.) The whole menagerie is seldom layed out,
although some physics book [5036] do mention all of the relevant “geometric objects.”

Let us start with the action of permuations. A tensor T of rank called pure if it is
either fully contravariant (having valence

[
α
0

]
then) or fully covariant (having valence

[
0
β

]

then). For reasons of simplicity, we will restrict ourselves to these cases, viewing all tensors
as multilinear maps into R. Then we call T symmetric if T remains invariant under all
permutation of its arguments and alternating (also called skew- or anti-symmetric) if T
changes sign for alternating permutations (one may obviously reduce these requirements
to transpositions). As one sees immediately, this gives subspaces of the corresponding
plain tensor spaces. In analogy to the usual contravariant and covariant tensors, this
gives respectively symmetric tensor bundles ΣαM and Σβ

∗M as well as alternating tensor
bundles ΛαM and Λβ

∗M . In their component arrays, symmetric/alternating tensors display
an analogous behavior, e.g. (skew)symmetric matrices in rank two; in fact, this was is the
old way of defining symmetric/alternating tensors—together with the remark that the
(skew)symmetry remains invariant under coordinate changes.

An arbitrary tensor may be symmetrized or alternated in the obvious manner (see [2202]
for details). This means we have projection maps Sym and Alt, both defined on T α,0M as
well as T 0,βM , such that

Sym(T α,0M) = ΣαM and Sym(T 0,βM) = Σβ
∗M,

Alt(T α,0M) = ΛαM and Alt(T 0,βM) = Λβ
∗M.

A tensor τ is symmetric iff Sym(τ) = τ and alternating iff Alt(τ) = τ . Furthermore,
Sym and Alt commute with pullback/pushforward (this means we can pull them back
and push them forward just as if they were plain tensors). In components, one indicates
symmetrization/alternation by putting round/square brackets around the indices [45238].
One may also multiply symmetric/alternating tensors by usual tensor multiplication with
subsequent symmetrization/alternation, resulting in a tensor with rank the sum of ranks.
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An alternative approach to symmetric/alternating tensors is via quotient spaces of the
plain tensors: One simply collapses the subspace generated by all commutators/anticommutators
of the basis elements. This is not essentially different from the selective approach outlined
above; in fact, we have just selected canonical representatives from the equivalence classes
of the quotient.

Of course, the symmetric/alternating tensor bundles are of a lower dimension than the
plain ones. In fact, one may restrict the tensor basis vectors (being tensor products of
basis vectors) for example to weakly/strictly ascending ones (meaning the indices of the
contributing basis vectors form a monotonically increasing / strictly increasing sequence).
Hence we have

dim ΣkM = dim Σk
∗M =

(
n+ k − 1

k

)

, dim ΛkM = dim Λk
∗M =

(
n

k

)

basis vectors in the respective cases.
There are two important examples that equip the manifoldM with additional structure:

Metrics are elements of Σ2
∗M , while symplectic forms are from Λ2

∗M . In physics, we may
quote stress and strain or the moment of inertia, all coming from Σ2

∗M as well.
The alternating structures are more important than the symmetric ones. An alternating

tensor of rank α is called a multivector or rank α or briefly an α-vector (for α = 1 we get
back the old vectors); an alternating form of rank β a multiform of rank β or briefly a
β-form (for β = 1 we get back the old linear forms). In the vector case, we may also
speak of monovectors, bivectors, trivectors and the like for α = 1, 2, 3, . . . ; the anlog for
multiforms seems to be uncommon—and the name “multiform” as well. The sections of
ΛαM are accordingly called α-vector fields, and their corresponding sheaf is denoted by
ΩαM ; the sections of Λβ

∗M are then named the differential β-forms, and their sheaf is
denoted by ΞβM .

As an aid for visualization one may take the models given for M = R3 in the beautiful
booklet [56]. Then we may picture vectors of course as “arrows”, forms as “stacks” of
equally spaced sheets with a big arrow for orienting them, bivectors as “thumbtacks” with
designated tip direction, and biforms as an “grid” of equally spaces wires with a specific
current direction. Note that all these four objects have three components (since they are
tensors of rank 1 on a manifold of dimension 3), while the behavior of their components
under transformation is very different! Indeed, expanding the space uniformly shrinks an
arrow shaft but condenses the sheets of a stack. Expanding the space along a thumbtack
or a grid has no effect, but expanding it transversally shrinks the thumbtack head and
condenses the grid lines.

As explained above, multivectors and multiforms can be multiplied: an α1-vector times
an α2-vector gives an (α1+α2)-vector, and a β1-form times a β2-form gives a (β1+β2)-form.
Hence the direct sum of all multivectors/multiforms gives an algebra, called the exterior
algebra of vectors/forms. This is important for the integration theory behind the general
Stokes theorem, where k-chains serve as the global analogs for k-vectors and k-integrals
for k-forms.
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For example, assume we want to integrate a “vector field” (doing a biintegral) over a
“surface patch” (a bichain) in space. An infinitesimal piece of the patch is spanned by
two vectors; since only are and orientation counts for integrating whatever quantity on the
surface patch, we may think of the path as the bivector formed by the product of the two
vectors. The integrand is a scalar f(p) depending on the point p of the surface patch and
the product of two differentials dx and dy; the precise formulation is that both dx and
dy are actually forms (stacks of sheets), whose product gives a biform (the grid of wires
at the sheet intersections); then the biform may evaluate the bivector (counting the wires
traversing the surface patch).

The n-forms ω ∈ Λn
∗M have a special role to play. If the manifold is orientable, they

can be used for determining the volume—this is why they are also called volume forms.
A manifold is orientable iff it has volume form that vanishes nowhere. Note that Λn

∗M is
a line bundle (also known as the “determinant bundle”), just like Λ0

∗M
∼= Cr(M), so a

volume form is somehow like a scalar field. But the difference is that—unlike an honest
scalar field—a volume form expands if the basis vectors expand: after all, it is supposed to
measure out the volume spanned by the basis vectors! There is also an analog for n-vectors,
forming another line bundle (let us call it the “codeterminant bundle”).

Now let us go to tensor densities, also called “densitized” or “weighted” tensors. For a
basis-free definition of the corresponding bundles, one proceeds most conveniently by form-
ing the tensor product with certain line bundles of scalar densitites, also called “densitized”
or “weighted” scalars. For any ρ ∈ R, a scalar density of weight ρ is a map µ : Λn

∗M → R
with the property that for all λ ∈ R× one has

µ(λω) = λ−ρ/n µ(ω) or µ(λω) = |λ|−ρ/n µ(ω);

such a densitiy is then called relative or absolute, respectively. In the literature, the relative
densities are mostly just called densities, whereas the absolute ones are often called pseudo-
tensors.

We write ±ΠρM for the space of all ρ-weighted scalar densities at p with + designating
the relative and − the absolute ones. Besides the usual laws for the signs, one obtains the
isomorphisms Πρ1M ⊗ Πρ2M = Πρ1+ρ2M and (ΠρM)∗ = Π−ρM . The scalar densities of
weight 0 are obviously the old scalars. The product ΠnM ⊗ −Π−nM is called the pseudo-
bundle; its elements, accordingly called pseudo-scalars, are like ordinary scalars except that
they flip sign when the orientation of the basis is reversed. In forming tensor products, of
relative/absolute tensor densities, they act like a minus sign (hence one needs only relative
or absolute tensor densitites once the pseudo-scalars are available).

For the common case of weigths ρ = nl with l ∈ Z, there is an additional interpretation
of tensor densities: twisting l times with the determinant bundle for l ≥ 0 and with
the codeterminant bundle for l ≤ 0. (Forming the tensor product with a line bundle is
often called “twisting with such-and-such”. ) Another important relation is given by the
Weinreich duality [5223], which associates k-forms with k′-vector densities where k′ = n−k.
(One often leaves out the specification of the weight if l = 1.) Note that we have silently
made this identification above when we described the visualization of bivectors and biforms.
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In coordinates, the effect of these twists is just what one expects: The tensor transfor-
mation laws (2.14) gets an additional factor (∂x̄/∂x)ρ for relative and |∂x̄/∂x|ρ for absolute
tensor densities of weight ρ. Tensor densities are seldom treated in the literature—if at all,
mostly by this coordinate characterization [47], [57].

Pseudo-tensors are important for integration on non-oriented manifolds. This is in
particular true for rank zero: pseudo-scalar densities (the “function” that one wants to
integrate), called “densities” in [31304]. Instead of a volume form, one needs a volume
pseudo-form in order to determine the volume of a non-orientable manifold (for example the
area of the Möbius band). On an orientable manifold, there is a bijective correspondence
between volume pseudo-forms and volume forms, so one does not notice the need of pseudo-
scalars there.

In physics, there is one famous group of quantities, namely the fundamental fields of
electro-magnetism as they appear in the Maxwell equations (everything alternating): The
electric field E is a monoform, the magnetic field H a biform, the electric flux D a pseudo-
biform, and the magnetic flux B a pseudo-monoform. (Note that in many texts, all these
quantities are sometimes just termed “vectors”—just because they can be described by real
numbers. Or because one may identify all four quantities if one has additional structure
like metrics. Or because one restricts oneself to orthogonal coordinate systems so that the
transition Jacobians are always rotation matrices.) Another case in point is the physicists’
distinction between axial and polar vectors: White the latter are plain old vectors, the
former ones are pseudo-vectors: vectors twisted by the pseudo-bundle.

In the presence of additional structure, there are numerous other ways of identifying
some of these objects. For example, in the presence of a Riemannian metric, one may
apply Hodge duality for associating k-forms with k′-pseudo-forms or—in case of an oriented
manifold—even with k-forms, where k′ = n − k. This is where the theory of manifolds
opens itself into the endless mathematical ocean of ever new structures . . .
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