
Information Systems
Relational Databases

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at



Outline

Normalization

Indexing



Normalization

Goals:
I Force better database design.
I Eliminate data redundancy.
I Make data retrieval more efficient.



Normalization

I A relation is in a normal form iff it satisfies conditions
prescribed to the normal form.

I A relvar is normalized as long as its legal value is a
normalized relation.

I In this course we consider four normal forms:
I 1NF,
I 2NF,
I 3NF,
I BCNF (Boyce-Codd Normal Form).



Normalization

I Normalization procedure: Successive reduction of a
collection of relvars to some normal form.

I Normalization procedure is reversible: It is possible to map
the output form of the procedure back to the input form.

I Reversibility is important: No information is lost during
normalization.

I Normalization process is nonloss or
information-preserving.



Nonloss decomposition

I Normalization procedure involves decomposing a given
relvar into other relvars.

I Decomposition is required to be reversible.
I The only decompositions we are interested in are nonloss.
I This concept is related with functional dependencies.



Decomposition
Relvar S and two corresponding decompositions:

S S# STATUS CITY
S3 30 Paris
S5 30 Athens

(a) SST S# STATUS SC S# CITY
S3 30 S3 Paris
S5 30 S5 Athens

(b) SST S# STATUS STC ST CITY
S3 30 30 Paris
S5 30 30 Athens



Decomposition
Relvar S and two corresponding decompositions:

S S# STATUS CITY
S3 30 Paris
S5 30 Athens

(a) SST S# STATUS SC S# CITY
S3 30 S3 Paris
S5 30 S5 Athens

(b) SST S# STATUS STC ST CITY
S3 30 30 Paris
S5 30 30 Athens

I In Case (a), no information is lost.

I SST and SC still say that S3 has status 30 and city Paris, and
S5 has status and city Athens.

I Nonloss decomposition.



Decomposition
Relvar S and two corresponding decompositions:

S S# STATUS CITY
S3 30 Paris
S5 30 Athens

(a) SST S# STATUS SC S# CITY
S3 30 S3 Paris
S5 30 S5 Athens

(b) SST S# STATUS STC ST CITY
S3 30 30 Paris
S5 30 30 Athens

I In Case (b), information is lost.

I We can still say that both suppliers S3 and S5 have status 30,
but cannot tel which supplier has which city.

I Lossy decomposition.



Decomposition
Relvar S and two corresponding decompositions:

S S# STATUS CITY
S3 30 Paris
S5 30 Athens

(a) SST S# STATUS SC S# CITY
S3 30 S3 Paris
S5 30 S5 Athens

(b) SST S# STATUS STC ST CITY
S3 30 30 Paris
S5 30 30 Athens

I The process of decomposition is actually a process of projection.

I SST, SC, and STC are projections of S.

I In Case (a), if we join SST and SC back again, we obtain S.

I In Case (b), joining SST and STC does not give S.



Decomposition

I Reversibility means that the original relvar is equal to the
join of its projections.

I Hence, in normalization process:
I Decomposition is projection
I Recomposition is join.



Nonloss Decomposition

I Assume:
I R1 and R2 are both projections of some relvar R
I R1 and R2 between them include all of the attributes of R

I Question:
I What conditions must be satisfied to guarantee that joining

R1 and R2 back together takes us back to the original R?



Nonloss Decomposition
Relvar S and two corresponding decompositions. The (a) is nonloss:

S S# STATUS CITY
S3 30 Paris
S5 30 Athens

(a) SST S# STATUS SC S# CITY
S3 30 S3 Paris
S5 30 S5 Athens

(b) SST S# STATUS STC ST CITY
S3 30 30 Paris
S5 30 30 Athens



Nonloss Decomposition
Relvar S and two corresponding decompositions. The (a) is nonloss:

S S# STATUS CITY
S3 30 Paris
S5 30 Athens

(a) SST S# STATUS SC S# CITY
S3 30 S3 Paris
S5 30 S5 Athens

(b) SST S# STATUS STC ST CITY
S3 30 30 Paris
S5 30 30 Athens

I Functional dependencies.

I S satisfies the irreducible set of FD’s:
{ S#→ STATUS, S#→ CITY }.

I It is not a coincidence that S is equal to the join of its projections
{S#, STATUS}, {S#,CITY}.



Nonloss Decomposition

Theorem (Heath)
Let R{A,B,C} be a relvar, where A,B,C are sets of attributes. If
R satisfies the FD A→B, then R is equal to the join of its
projections on {A,B} and {A,C}.



Nonloss Decomposition

I We will say that the decomposition of a relvar R into
projections R1,. . . ,Rn is nonloss, if R is equal to the join of
R1,. . . ,Rn.

I In practice we would want to impose the additional
requirement that R1,. . . ,Rn are all needed to join (to avoid
redundancies)



Normal Forms

I First, we introduce an informal definition of 3NF, to give an
idea where we are aiming at.

I Then consider the process of reducing of arbitrary relvar to
an equivalent collection of 3NF’s.



Normal Forms. 3NF. Informal Definition

I Third Normal Form: A relvar is in 3NF iff the nonkey
attributes (if any) are both

I Mutually independent and
I Irreducibly dependent on the primary key.

I A nonkey attribute: Any attribute that does not participate
in the primary key.

I Attributes are mutually independent if none of them is
functionally dependent on any combination of the others.
Such independence implies that each attribute can be
updated independently of the others.



Normal Forms. 3NF. Informal Definition

I Third Normal Form: A relvar is in 3NF iff the nonkey
attributes (if any) are both

I Mutually independent and
I Irreducibly dependent on the primary key.

I A nonkey attribute: Any attribute that does not participate
in the primary key.

I Attributes are mutually independent if none of them is
functionally dependent on any combination of the others.
Such independence implies that each attribute can be
updated independently of the others.



Normal Forms. 3NF. Informal Definition

I Third Normal Form: A relvar is in 3NF iff the nonkey
attributes (if any) are both

I Mutually independent and
I Irreducibly dependent on the primary key.

I A nonkey attribute: Any attribute that does not participate
in the primary key.

I Attributes are mutually independent if none of them is
functionally dependent on any combination of the others.
Such independence implies that each attribute can be
updated independently of the others.



Normal Forms

Example
I The parts relvar P in the suppliers-and-parts database is in

3NF:
I The attributes PNAME, COLOR, WEIGHT, and CITY are all

independent of one another (it is possible, e.g. to change
the color of a part without simultaneously changing its
weight)

I They are all irreducibly dependent on the primary key P#.



Normal Forms. 1NF

I First Normal Form:
I A relvar is in 1NF iff in every legal value of that relvar, every

tuple contains exactly one value for each attribute.



Normal Forms. 1NF. Example
FIRST S# STATUS CITY P# QTY

S1 20 London P1 300
S1 20 London P2 200
S1 20 London P3 400
S1 20 London P4 200
S1 20 London P5 100
S1 20 London P6 100
S2 10 Paris P1 300
S2 10 Paris P2 400
S3 10 Paris P2 200
S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

I Assume in the supplier-and-parts database S and SP are not
split, but are lumped together in a single relvar (with some
values slightly modified):
FIRST { S#, STATUS, CITY, P#, QTY }

PRIMARY KEY { S#, P# }



Normal Forms. 1NF. Example
FIRST S# STATUS CITY P# QTY

S1 20 London P1 300
S1 20 London P2 200
S1 20 London P3 400
S1 20 London P4 200
S1 20 London P5 100
S1 20 London P6 100
S2 10 Paris P1 300
S2 10 Paris P2 400
S3 10 Paris P2 200
S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

I Let CITY→STATUS be an additional constraint.



Normal Forms. 1NF. Example
FIRST S# STATUS CITY P# QTY

S1 20 London P1 300
S1 20 London P2 200
S1 20 London P3 400
S1 20 London P4 200
S1 20 London P5 100
S1 20 London P6 100
S2 10 Paris P1 300
S2 10 Paris P2 400
S3 10 Paris P2 200
S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

I FIRST is in 1NF, but not in 3NF. Both conditions are violated:

I The nonkey attributes are not all mutually independent
(STATUS depends on CITY).

I The are not all irreducibly dependent on the primary key
(STATUS and CITY each depend on S# alone).



Normal Forms. 1NF. Example
FIRST S# STATUS CITY P# QTY

S1 20 London P1 300
S1 20 London P2 200
S1 20 London P3 400
S1 20 London P4 200
S1 20 London P5 100
S1 20 London P6 100
S2 10 Paris P1 300
S2 10 Paris P2 400
S3 10 Paris P2 200
S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

I FIRST contains redundancies:

I Every tuple for S1 shows city as London.
I Every tuple for London shows status as 20.

I Too much information bundled together. Bad behavior on delete.



Normal Forms
SP S# P# QTY SECOND S# STATUS CITY

S1 P1 300 S1 20 London
S1 P2 200 S2 10 Paris
S1 P3 400 S3 10 Paris
S1 P4 200 S4 20 London
S1 P5 100 S5 30 Athens
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

I The solution of the problems related to FIRST: Replace FIRST
by the two relvars:

I SP { S#, P#, QTY }
I SECOND { S#, STATUS, CITY }



Normal Forms
SP S# P# QTY SECOND S# STATUS CITY

S1 P1 300 S1 20 London
S1 P2 200 S2 10 Paris
S1 P3 400 S3 10 Paris
S1 P4 200 S4 20 London
S1 P5 100 S5 30 Athens
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

I Decomposition of FIRST into SP and SECOND eliminates
redundancies.



Normal Forms. 2NF

The definition assumes only one candidate key, which is the
primary key.

I Second Normal Form: A relvar is in 2NF iff
I it is in 1NF and
I every nonkey attribute is irreducibly dependent on the

primary key.



Normal Forms
SP S# P# QTY SECOND S# STATUS CITY

S1 P1 300 S1 20 London
S1 P2 200 S2 10 Paris
S1 P3 400 S3 10 Paris
S1 P4 200 S4 20 London
S1 P5 100 S5 30 Athens
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

I SP and SECOND are both in 2NF. FIRST is not.



Normal Forms
SP S# P# QTY SECOND S# STATUS CITY

S1 P1 300 S1 20 London
S1 P2 200 S2 10 Paris
S1 P3 400 S3 10 Paris
S1 P4 200 S4 20 London
S1 P5 100 S5 30 Athens
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

I A relvar that is in 1NF and not in 2NF can always be reduced to
an equivalent collection of 2NF relvars.

I Reduction: Replace the 1NF relvar by suitable projections. The
obtained collection is equivalent to the original relvar.



Normal Forms
SP S# P# QTY SECOND S# STATUS CITY

S1 P1 300 S1 20 London
S1 P2 200 S2 10 Paris
S1 P3 400 S3 10 Paris
S1 P4 200 S4 20 London
S1 P5 100 S5 30 Athens
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

I SP and SECOND are projections of FIRST, and FIRST is the
join of SECOND and SP over S#.



Normalization Procedure

I The first step in the normalization procedure: Take
projections to eliminate “nonirreducible” functional
dependencies.

I Given relvar R as follows
R { A, B, C, D }

PRIMARY KEY { A, B }
/* assume A→D holds */

I Replace R by two projections R1 and R2:
R1 { A, D }

PRIMARY KEY { A }
R2 { A, B, C }

PRIMARY KEY { A, B }
FOREIGN KEY { A } REFERENCES R1

I R can be recovered by taking the
foreign-to-matching-primary-key join of R2 and R1.



Normal Forms
SP S# P# QTY SECOND S# STATUS CITY

S1 P1 300 S1 20 London
S1 P2 200 S2 10 Paris
S1 P3 400 S3 10 Paris
S1 P4 200 S4 20 London
S1 P5 100 S5 30 Athens
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

I SP is satisfactory. It is in 3NF.

I SECOND suffers from a lack of mutual independence among its
nonkey attributes



Normal Forms
SP S# P# QTY SECOND S# STATUS CITY

S1 P1 300 S1 20 London
S1 P2 200 S2 10 Paris
S1 P3 400 S3 10 Paris
S1 P4 200 S4 20 London
S1 P5 100 S5 30 Athens
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

I Each S# value determines a CITY value, and each CITY value
determines the STATUS value.

I STATUS transitively depends on S# via CITY.



Normal Forms
SP S# P# QTY SECOND S# STATUS CITY

S1 P1 300 S1 20 London
S1 P2 200 S2 10 Paris
S1 P3 400 S3 10 Paris
S1 P4 200 S4 20 London
S1 P5 100 S5 30 Athens
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

I If we delete the tuple for S5, we lose the information that the
status of Athens in 30.

I The problem is “bundling” again. SECOND contains information
regarding suppliers and regarding cities.

I Solution: “unbundle”.



Normal Forms

SC S# City CS City STATUS
S1 London Athens 30
S2 Paris London 20
S3 Paris Paris 10
S4 London Rome 50
S5 Athens

I Replace SECOND by two projections:

I SC { S#, CITY }
I CS { CITY, STATUS}

I The effect is to eliminate the transitive dependence of STATUS
on S#.



3NF

The definition assumes only one candidate key, which is the
primary key.

I Third Normal Form: A relvar id in 3NF iff
I it is in 2NF and
I every nonkey attribute is nontransitively dependent on the

primary key.
I No transitive dependencies imply no mutual dependencies.



Normal Forms

SC S# City CS City STATUS
S1 London Athens 30
S2 Paris London 20
S3 Paris Paris 10
S4 London Rome 50
S5 Athens

I SC and CS are both in 3NF, with the primary keys {S#} and
{CITY}, respectively.

I A relvar that is in 2NF but not in 3NF can be reduced to an
equivalent collection of 3NF relvars.

I The reduction is reversible.



Normalization Procedure

I The second step in the normalization procedure: Take
projections to eliminate transitive functional dependencies.

I Given relvar R as follows
R { A, B, C }

PRIMARY KEY { A }
/* assume B→C holds */

I Replace R by two projections R1 and R2:
R1 { B, C }

PRIMARY KEY { B }
R2 { A, B }

PRIMARY KEY { A }
FOREIGN KEY { B } REFERENCES R1

I R can be recovered by taking the
foreign-to-matching-primary-key join of R2 and R1.



Boyce/Codd Normal Form

I Drop the assumption that every relvar has just one
candidate key and consider the general case.

I Terms:
I Determinant: The left hand side of an FD.
I Trivial FD: An FD whose right hand side is a subset of its

left hand side.
I Boyce/Codd Normal Form: A relvar is in BCNF iff every

nontrivial, left-irreducible FD has a candidate key as its
determinant.



Remark

I There are also higher normal forms denoted by 4NF and
5NF (not treated in this lecture).

I The goal of database design is to reach BCNF, or if it
seems to be too much effort for too little gain, to reach 3NF.

I Too much normalization can also decrease system
performance, therefore sometimes denormalization is
applied after reaching the higher normal forms.



Indexing

I Consider suppliers once again.
I Suppose the query “Get all suppliers in city c” (where c is a

parameter) is an important one: frequently executed and
therefore required to perform well.



Indexing

I The DBA might choose the stored representation with two
files, a supplier file and a city file.

I In the city file CITY is the primary key, and it is ordered in
city sequence.

I It includes pointers (RIDs) into the supplier file.



Indexing

DBMS has two possible strategies to get all suppliers in London:

1. Search the entire supplier file, looking for all records with
city value equal to London.

2. Search the city file for the London entries, and for each
such entry follow the pointer to the corresponding record in
the supplier file.



Indexing

If the ratio of London suppliers to others is small, the second
strategies is likely to be more efficient, because

1. the DBMS can stop its search of that file as soon as it finds
a city that comes later than London in alphabetic order, and

2. even if it did have to search the entire city file, that search
would still probably require fewer I/O’s overall, because the
city file is physically smaller (smaller records).



Indexing

1. The city file in an index (the CITY index) to the supplier file.
2. The supplier file is indexed by the city file.



Indexing

I An index is a file in which each entry (i.e. each record)
consists of precisely two values, a data value and a pointer
(RID).

I The data value is a value for some field of the indexed file.
I The pointer identifies a record of that file that has that

value for that field.
I The relevant field of the indexed file is called the indexed

field.



Indexing. Pros and Cons

I The fundamental advantage of an index is that it speeds
up retrieval.

I Indexing may help to perform existence tests.
I Disadvantage: It slows down updates.
I For instance, every time a new record is added to the

indexed file, a new entry will also have to be added to the
index.



Retrieval

Access types:
I Sequential access: The index can help with range queries,

e.g. “Get suppliers whose city is in some specified
alphabetic range”. Two important special cases:

I “Get all suppliers whose city alphabetically precedes (or
follows) some specified value,”

I “Get all suppliers whose city is alphabetically first (or last).”
I Direct access: The index can help with list queries, e.g.

“Get suppliers whose city is in some specified list”
(London, Paris, and New York).



Indexing

I A given file can have any number of indexes, e.g. CITY
index and a STATUS index.

I Efficient access to supplier records on the basis of given
values for either or both of CITY and STATUS.



Indexing

I Illustration of the “both” case: The query “Get suppliers in
Paris with status 30.”

I CITY index give two PIDs: r2 and r3. STATUS index gives
r3 and r5.

I From them, the answer is obtained: r3.
I Only then DBMS retrieves the desired record (supplier S3).



Dense vs Sparse Indices

I Sparse index does not contain an entry for every record in
the indexed file.

I By contrast, all indexes discussed prior to this point have
been dense.

I Sparse index occupies less space than a corresponding
dense index.

I As a result, it will probably be quicker to scan also.
I A disadvantage is that it might no longer be possible to

perform existence tests on the basis of the index alone.



Multi-Level Indexing

I The reason for providing an index: to remove the need for
physical sequential scanning of the indexed file.

I However, physical sequential scanning is still needed in the
index.

I If the indexed file is very large, then the index can itself get
to be quite sizable.

I Sequentially scanning the index can itself get to be quite
time consuming.

I Solution: Build an index for an index.
I each level of the index acts as a sparse index for the level

below.



B-Trees

I B-Trees: common and important kind of index.
I The index consists of two parts, the sequence set and the

index set.
I The sequence set consists of a single-level index to the

actual data. (Lowest level on the figure.)
I The index set, provides fast direct access to the sequence

set. (The upper tree on the figure.)



B-Trees

I The most important feature of B-trees is that they are
always balanced

I Hence the depth of the tree grows only logarithmically in
the growth of the indexed records.



The Rules for B-Trees
I To construct a B-tree, fix an integer n and require that

I the root stores minimum 1 and maximum 2n key values,
I each node of the tree, with the exception of the root, stores

minimum n and maximum 2n key values,
I leaf nodes are on the same level.

I The subtrees have the property that each value stored in them
lie between the two values neighboring the pointer that links the
subtree to the node.

I B-tree of order n.



Insertion in a B-Tree

Example



Insertion in a B-Tree

Example



Summary

I First, second, third, and Boyce-Codd normal forms have
been discussed.

I A given relvar can always be brought to BCNF.
I The normalization process consists of replacing a given

relvar by certain projections in such a way that joining
those projections back together again gives us back the
original relvar.

I It means that the process is reversible.
I Functional dependencies play a crucial role in the process.
I Heath’s theorem says that if a certain FD is satisfied, then

a certain decomposition is nonloss.
I Moreover, indexes (in particular B-trees) and their use for

both sequential and direct access have been discussed.


	Normalization
	Indexing

