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Abstract: When we have to solve a system of linear equations,
we apply the elimination procedure of Gauss and transform the
system into a triangular one. From this triangular form we can
immediately read off the solutions:

2x − y − z = 0 x + 2y − 2z = 1
x + 2y − 2z = 1 =⇒ y − 5z = −4
x − y + 2z = 2 z = 1

A similar process can be applied in adapted form to systems of
non-linear polynomial (algebraic) equations:

2x4 − 3x2y + y4 − 2y3 + y2 = 0 3x2 + 2y2 − 2y = 0
4x3 − 3xy = 0 =⇒ xy = 0

4y3 − 3x2 − 6y2 + 2y = 0 x3 = 0

A representation such as the one on the right hand side is called
a Gröbner basis (of the ideal generated by the equations).

We discuss the method of Gröbner bases, and an application
of the method to the inverse kinematic problem in robotics.
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Linear equations — elimination method of Gauss:

for a system of linear equations we order the variables, e.g.
x > y > z, and then successively eliminate higher variables
from equations, i.e. eliminate under the diagonal. In this way
the system is transformed to triangular form, from which we
can read off the solution:

2x − y − z = 0 x + 2y − 2z = 1
x + 2y − 2z = 1 =⇒ y − 5z = −4
x − y + 2z = 2 z = 1

So the solution is: x = 1, y = 1, z = 1
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Univariate equations — Euclidean algorithm:

We want to determine the common solutions of 2 polynomial
equations in 1 variable:

f(x) = g(x) = 0.

The common solutions are the solutions of the greatest common
divisor (gcd).
We compute the remainder of f(x) on division by g(x), i.e.
rem(f, g) = h(x), and replace the pair (f, g) by (g, h). This
leaves the greatest common divisor (gcd) unchanged:

r0 = f = x4 + x3 − x − 1
r1 = g = x4 + x2 − 2
r2 = rest(r0, r1) = x3 − x2 − x + 1
r3 = rest(r1, r2) = 3x2 − 3
r4 = rest(r2, r3) = 0

So gcd(f, g) = x2 − 1

The common solutions of f(x) = g(x) = 0 are the zeros of
gcd(f, g), so x = ±1.
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Multivariate non-linear equations — Gröbner bases:

For details we refer to
F. Winkler,
Polynomial Algorithms in Computer Algebra,

Springer Wien New York (1996)

we consider systems of polynomial (algebraic) equations in sev-
eral variables x1, . . . , xn:

f1(x1, . . . , xn) = 0,

...

fm(x1, . . . , xn) = 0.

we order the terms in these polynomials, for instance lexico-
graphically:

1 < x < x2 < . . . < y < xy < x2y < . . . < y2 < . . .

or degree-lexicographically:

1 < x < y < x2 < xy < y2 < x3 < x2y < xy2 < y3 < . . .

so every polynomial f(x1, . . . , xn) 6= 0 has a “leading term”
lt(f) with a “leading coefficient” lc(f)
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Reduction of polynomials:
Now we reduce higher terms in these polynomials.
let f, g, h be polynomials.
f can be reduced to g modulo h,

f −→h g,

iff a multiple of the leading term of h, of the form c · t · lt(h),
occurs in f , and

g = f − c · t · h.

Example: polynomials in Q[x, y], lexicographical term ordering
with x < y:

2x2y2 + x7y − 4 −→x3y+y+x 2x2y2 − x4y − x5 − 4

This reduction is not unique, in general. We want to make it
unique.
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Subtraction polynomials: S-polynomials
cancellation of leading terms:

S − pol(f, g) =

1

lc(f)
·
lcm(lt(f), lt(g))

lt(f)
· f −

1

lc(g)
·
lcm(lt(f), lt(g))

lt(g)
· g

for instance
f = 2x2y2 + x7y − 4
g = x3y + y + x

S − pol(f, g) = −y2 +
1

2
x8y − xy − 2x
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Definition: A (finite) set of polynomials G = {g1, . . . , gn}
is a Gröbner basis (for the ideal generated by G) iff all S-
polynomials of G can be reduced to 0 modulo the polynomials
in G (in possibly several finitely many steps). So G is a Gröbner
basis if and only if the reduction w.r.t. G is unique.

Gröbner basis algorithm (B.Buchberger 1965):
For transforming a set of polynomials F into a Gröbner basis,
we consider all S-polynomials, reduce them, and add the reduc-
tion result to the basis (if it is non-zero). We proceed in the
same way with the enlarged basis, until all the S-polynomials
are dealt with.
At the end of this process we interreduce the basis and elimi-
nate 0 from the basis.

This process always terminates and upon termination yields a
Gröbner basis for the input ideal. Obviously this process does
not change the set of solutions. From a Gröbner basis (w.r.t.
a lexicographic term ordering) we can “read off” the solutions
of the system.
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Example

we compute a Gröbner basis for the system of equations

f1(x, y) = f2(x, y) = 0,

where
f1 = x2y2 + y − 1, f2 = x2y + x.

We order the terms lexicographically with x < y.

S − pol(f1, f2) = f1 − yf2 = −xy + y − 1 =: f3 is irreducible,
so G := {f1, f2, f3}.
S − pol(f2, f3) = f2 + xf3 = xy −→f3

y − 1 =: f4, so G :=
{f1, f2, f3, f4}.
S − pol(f3, f4) = f3 + xf4 = y − x − 1 −→f4

−x =: f5, so
G := {f1, . . . , f5}.

All the other S–polynomials reduce to 0, so we get the Gröbner
basis

G = {x2y2 + y − 1, x2y + x,−xy + y − 1, y − 1,−x}.

Obviously the only solution of these equations is

x = 0, y = 1.
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Example: Singular points on an algebraic curve

f(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4.

So we want to solve the system of equations

f(x, y) = 0

∂f

∂x
(x, y) = 0

∂f

∂y
(x, y) = 0

2x4 − 3x2y + y4 − 2y3 + y2 2y2 − 2y + 3x2

4x3 − 3xy =⇒GB.Alg. xy

4y3 − 3x2 − 6y2 + 2y x3

So the singularities are at (0, 0) and (0, 1).
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