Gröbner bases at work: Inverse Kinematics in Robotics

We consider robots with prismatic and revolute joints. The kinematics of such robots can be described by multivariate polynomial equations, after having represented angles α by their sines and cosines and having added the equation $\sin^2(\alpha) + \cos^2(\alpha) = 1$ to the set of polynomial equations.

- forward kinematics: determines the position of the end-effector for given lengths of prismatic joints and angles of revolute joints
- inverse kinematics: determines possible lengths and angles from a predetermined goal position of the end-effector. Whereas a forward kinematics problem always has exactly one solution, an inverse kinematics problem could have no, exactly one, or several (possibly infinitely many) solutions.

Example:

This is a family of robots $(l_1, l_2 \text{ are the parameters})$ of the family) with 2 degrees of freedom.

l_1, l_2	 lengths of the two robot arms
p_x, p_y, p_z	 x-, y -, and z -coordinates of the position
	of the end-effector
δ_1,δ_2	 angles describing the rotations of the
	revolute joints
s_1, s_2, c_1, c_2	 sines and cosines of δ_1, δ_2 , respectively

Corresponding system of algebraic equations: given l_1, l_2, p_x, p_z , solve for s_1, c_1, s_2, c_2, p_y

$$l_{2} \cdot c_{1} \cdot c_{2} - px = 0,$$

$$l_{2} \cdot s_{1} \cdot c_{2} - py = 0,$$

$$l_{2} \cdot s_{2} + l_{1} - pz = 0,$$

$$c_{1}^{2} + s_{1}^{2} - 1 = 0,$$

$$c_{2}^{2} + s_{2}^{2} - 1 = 0.$$

Gröbner basis for this system (in $\mathbb{Q}(l_1, l_2, p_x, p_z)[c_1, c_2, s_1, s_2, p_y]$): $(l_2^2 - l_1^2 + 2l_1p_z - p_z^2 - p_x^2) \cdot c_1 - p_x \cdot s_1 \cdot p_y = 0,$ $(l_2^3 - l_2l_1^2 + 2l_2l_1p_z - l_2p_z^2 - l_2p_x^2) \cdot c_2$ $+ (-l_2^2 + l_1^2 - 2l_1p_z + p_z^2) \cdot s_1 \cdot p_y = 0,$ $(l_2^2 - l_1^2 + 2l_1p_z - p_z^2) \cdot s_1^2 - l_2^2 + l_1^2 - 2l_1p_z$ $+ p_z^2 + p_x^2 = 0,$

$$l_2 s_2 + l_1 - p_z = 0,$$

$$-l_2^2 + l_1^2 - 2l_1p_z + p_z^2 + p_x^2 + p_y^2 = 0.$$

In this Gröbner basis the variables "are separated", i.e. we can solve for 1 variable at a time (starting from the last polynomial up to the first). So, for instance, for

$$l_1 = 30 \qquad \dots \qquad \text{length of first bar} \\ l_2 = 45 \qquad \dots \qquad \text{length of second bar} \\ p_x = \frac{45 \cdot \sqrt{6}}{4} \simeq 27.5567 \qquad \dots \qquad x\text{-coordinate of end-eff.} \\ p_z = \frac{45 \cdot \sqrt{2}}{2} + 30 \simeq 61.8198 \qquad \dots \qquad z\text{-coordinate of end-eff.} \end{cases}$$

we get (among others) the solution

$$p_y = \frac{45\sqrt{2}}{4}, \ s_2 = \frac{\sqrt{2}}{2}, \ s_1 = \frac{1}{2}, \ c_2 = \frac{\sqrt{2}}{2}, \ c_1 = \frac{\sqrt{3}}{2},$$

i.e. the angles have to be set to

$$\delta_1 = 30^\circ, \delta_2 = 45^\circ.$$