Gröbner bases at work: Inverse Kinematics in Robotics

We consider robots with prismatic and revolute joints. The kinematics of such robots can be described by multivariate polynomial equations, after having represented angles α by their sines and cosines and having added the equation $\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1$ to the set of polynomial equations.

- forward kinematics: determines the position of the end-effector for given lengths of prismatic joints and angles of revolute joints
- inverse kinematics: determines possible lengths and angles from a predetermined goal position of the end-effector. Whereas a forward kinematics problem always has exactly one solution, an inverse kinematics problem could have no, exactly one, or several (possibly infinitely many) solutions.

Example:

This is a family of robots $\left(l_{1}, l_{2}\right.$ are the parameters of the family) with 2 degrees of freedom.
$l_{1}, l_{2} \quad \ldots \ldots$ lengths of the two robot arms
$p_{x}, p_{y}, p_{z} \quad \ldots \ldots x$-, y-, and z-coordinates of the position of the end-effector
$\delta_{1}, \delta_{2} \quad \ldots .$. angles describing the rotations of the revolute joints
$s_{1}, s_{2}, c_{1}, c_{2} \ldots \ldots$ sines and cosines of δ_{1}, δ_{2}, respectively

Corresponding system of algebraic equations:
given $l_{1}, l_{2}, p_{x}, p_{z}$,
solve for $s_{1}, c_{1}, s_{2}, c_{2}, p_{y}$

$$
\begin{aligned}
l_{2} \cdot c_{1} \cdot c_{2}-p x & =0, \\
l_{2} \cdot s_{1} \cdot c_{2}-p y & =0, \\
l_{2} \cdot s_{2}+l_{1}-p z & =0, \\
c_{1}^{2}+s_{1}^{2}-1 & =0, \\
c_{2}^{2}+s_{2}^{2}-1 & =0
\end{aligned}
$$

Gröbner basis for this system (in $\left.\mathbb{Q}\left(l_{1}, l_{2}, p_{x}, p_{z}\right)\left[c_{1}, c_{2}, s_{1}, s_{2}, p_{y}\right]\right)$:

$$
\begin{aligned}
&\left(l_{2}^{2}-l_{1}^{2}+2 l_{1} p_{z}-p_{z}^{2}-p_{x}^{2}\right) \cdot c_{1}-p_{x} \cdot s_{1} \cdot p_{y}=0 \\
&\left(l_{2}^{3}-l_{2} l_{1}^{2}+2 l_{2} l_{1} p_{z}-l_{2} p_{z}^{2}-l_{2} p_{x}^{2}\right) \cdot c_{2} \\
&+\left(-l_{2}^{2}+l_{1}^{2}-2 l_{1} p_{z}+p_{z}^{2}\right) \cdot s_{1} \cdot p_{y}=0
\end{aligned}
$$

$$
\left(l_{2}^{2}-l_{1}^{2}+2 l_{1} p_{z}-p_{z}^{2}\right) \cdot s_{1}^{2}-l_{2}^{2}+l_{1}^{2}-2 l_{1} p_{z}
$$

$$
+p_{z}^{2}+p_{x}^{2}=0
$$

$$
l_{2} s_{2}+l_{1}-p_{z}=0
$$

$$
-l_{2}^{2}+l_{1}^{2}-2 l_{1} p_{z}+p_{z}^{2}+p_{x}^{2}+p_{y}^{2}=0
$$

In this Gröbner basis the variables "are separated", i.e. we can solve for 1 variable at a time (starting from the last polynomial up to the first).

So, for instance, for

$$
\begin{array}{ll}
l_{1}=30 & \ldots \ldots . \\
l_{2}=45 & \ldots \ldots \\
p_{x}=\frac{45 \cdot \sqrt{6}}{4} \simeq 27.5567 & \ldots \ldots \\
p_{z}=\frac{45 \cdot \sqrt{2}}{2}+30 \simeq 61.8198 & \ldots \ldots
\end{array} \text { length of first bar } \begin{aligned}
& \text {-coordinate of end-coordinate of end-eff. }
\end{aligned}
$$

we get (among others) the solution

$$
p_{y}=\frac{45 \sqrt{2}}{4}, s_{2}=\frac{\sqrt{2}}{2}, s_{1}=\frac{1}{2}, c_{2}=\frac{\sqrt{2}}{2}, c_{1}=\frac{\sqrt{3}}{2}
$$

i.e. the angles have to be set to

$$
\delta_{1}=30^{\circ}, \delta_{2}=45^{\circ} .
$$

