
Information Systems
Database System Architecture. Relational Databases

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Outline

The Three Levels of the Architecture
The External Level
The Conceptual Level
The Internal Level

The Relational Model
An Informal Look
Data Structure. Types and Relations

The Three Levels of the Architecture

I Goal: To present an architecture of a database system.
I This will give a framework on which the subsequent

material will be built.
I This architecture fits well to most of the systems.
I Three levels: Internal, conceptual, and external.

The Three Levels of the Architecture

I The internal level: closest to physical storage, concerned
with the way data is stored inside the system.

The Three Levels of the Architecture

I The external level: closest to users, concerned with the
way the data is seen by individual users.

The Three Levels of the Architecture

I The conceptual level: a level of indirection between the
other two.

The Three Levels of Architecture

External (PL/I) External (COBOL)
DCL 1 EMPP, 01 EMPC.

2 EMP# CHAR(6) 02 EMPNO PIC X(6).
2 SAL FIXED BIN(31) 02 DEPTH PIC X(4).

Conceptual
EMPLOYEE
EMPLOYEE_NUMBER CHARACTER(6)
DEPARTMENT_NUMBER CHARACTER(4)
SALARY DECIMAL(5)

Internal
STORED_EMP BYTES=20
PREFIX BYTES=6,OFFSET=0
EMP# BYTES=6,OFFSET=6,INDEX=EMPX
DEPT# BYTES=4,OFFSET=12
PAY BYTES=4,ALIGN=FULLWORD,OFFSET=16

Mappings

I Corresponding data items can have different names at
different points in the scheme.

I Example: The employee number on the previous slide.
I The system must be aware of such correspondences,

called mappings.

Outline

The Three Levels of the Architecture
The External Level
The Conceptual Level
The Internal Level

The Relational Model
An Informal Look
Data Structure. Types and Relations

The External Level

I The external level is an individual user level.
I Each user has a language at her disposal:

I For the application programmer, the language is either a
conventional programming language (Java, C++, etc.) or a
proprietary language specific to the system.

I For an end user, the language is either a query language
(probably SQL) or some special-purpose language,
perhaps menu- or forms-driven.

I All these languages include data sublanguage (DSL)
concerned with database objects and operations.

I One particular DSL supported by almost all current
systems is SQL (to be used both a stand-alone query
language and embedded in other languages).

The External Level

I Any DSL is a combination of two subordination languages:
a data definition language (DDL) and a data manipulation
language (DML).

I DDL supports the definition or “declaration” of database
objects.

I DML supports the processing or “manipulation” of
database objects.

The External Level

I The external view consists of many occurrences of many
types of external records.

I The users DSL is thus defined in terms of external records.
I For instance, DML retrieve operation will retrieve external

record occurrences, not the stored ones.
I Each external view is defined by an external schema,

consisting of definitions of each of the external record
types in that external view.

Outline

The Three Levels of the Architecture
The External Level
The Conceptual Level
The Internal Level

The Relational Model
An Informal Look
Data Structure. Types and Relations

The Conceptual Level

I The conceptual level is a representation of the entire
information content of the database.

I The form of the representation is abstract in comparison
with the way in which the data is physically stored.

I The form is also, in general, different from the way the data
is viewed by any particular user.

I The conceptual view is intended to be a view of the data
“as it really is” rather than as users (are forced to) see it.

The Conceptual Level

I The conceptual view consists of many occurrences of
many types of conceptual records.

I Example: It might consist of a collection of department
record occurrences, plus a collection of employee record
occurrences, plus a collection of supplier record
occurrences, and so on.

I The conceptual view is defined by means of conceptual
schema, which includes definitions of each of the various
conceptual record types.

I The conceptual schema is written using the conceptual
DDL.

I In most existing systems the conceptual schema is little
more than simple union of all the individual external
schemas, plus certain security and integrity constraints.

Outline

The Three Levels of the Architecture
The External Level
The Conceptual Level
The Internal Level

The Relational Model
An Informal Look
Data Structure. Types and Relations

The Internal Level

I The internal level is a low-level representation of the entire
database.

I It consists of many occurrences of many types of internal
records (we call them stored records).

I The internal view does not deal in terms of physical
records of any device-specific considerations.

I The internal view is described by means of the internal
schema.

I The internal schema defines the various stored record
types, plus specifies what indexes exist, how stored fields
are represented, what physical sequence of stored records
are in, and so on.

I The internal schema is written using the internal DDL.
I Other terms for internal view and internal schema: stored

database and stored database definition, respectively.

Detailed Architecture

Summary

I Database system architecture consists of three levels.
I The internal level is the one closest to physical storage.
I The external level is the one closest to the users.
I The conceptual level is a level of indirection between these

two.
I The data as perceived at these levels is defined by a

schema or schemas.
I Mappings define correspondence between

I a given external schema and the conceptual schema, and
I the conceptual schema and internal schema.

I Users interact with the data by means of DSL.
I DSL consists of at least two subcomponents: DDL and

DML.

Outline

The Three Levels of the Architecture
The External Level
The Conceptual Level
The Internal Level

The Relational Model
An Informal Look
Data Structure. Types and Relations

An Informal Look at the Relational Model

I Relational model provides the theoretical foundations of
relational systems.

I Intuitive and informal introduction to relational databases.

An Informal Look at the Relational Model

Relational model has the following three aspects:
I Structural aspect: The data is perceived as tables.
I Integrity aspect: The tables satisfy certain integrity

constraints (considered a bit later).
I Manipulative aspect: Operators that manipulate tables

derive tables from tables.

Example: Restrict, Project, Join Operations
DEPT DEPT# DNAME BUDGET

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

EMP EMP# ENAME DEPT# SALARY
E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

Example: Restrict, Project, Join Operations
DEPT DEPT# DNAME BUDGET

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

EMP EMP# ENAME DEPT# SALARY
E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

Restrict: DEPTs where BUDGET > 8M

Result: DEPT# DNAME BUDGET
D1 Marketing 10M
D2 Development 12M

Extracts specified rows from the table.

Example: Restrict, Project, Join Operations
DEPT DEPT# DNAME BUDGET

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

EMP EMP# ENAME DEPT# SALARY
E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

Project: DEPTs over DEPT#, BUDGET

Result DEPT# BUDGET
D1 10M
D2 12M
D3 5M

Extracts specified columns from the table.

Example: Restrict, Project, Join Operations
DEPT DEPT# DNAME BUDGET

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

EMP EMP# ENAME DEPT# SALARY
E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

Join: DEPTs and EMPs over DEPT#

Result DEPT# DNAME BGT. EMP# ENAME SAL.
D1 Marketing 10M E1 Lopez 40K
D1 Marketing 10M E2 Cheng 42K
D2 Development 12M E3 Finzi 30K
D2 Development 12M E4 Saito 35K

Combines the tables based on common values in a common column.

Structural and Manipulative Aspects

I Operations operate on tables and derive tables: Closure
property of relational systems.

I Closure property is very important: The output of one
operation can become input to another.

I Nesting relational expressions: Projection of a join, join of
two restrictions, etc.

Structural and Manipulative Aspects

Two additional points:
1. Relational systems require the database to be perceived

by the user as tables: Logical (not physical) structure.
2. Relational systems abide The Information Principle: The

entire information content of the database is represented in
one and only one way—as explicit values in column
positions in rows in tables.

Integrity constraints
DEPT DEPT# DNAME BUDGET

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

EMP EMP# ENAME DEPT# SALARY
E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

Integrity constraints
DEPT DEPT# DNAME BUDGET

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

EMP EMP# ENAME DEPT# SALARY
E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

Examples of integrity constraints:

I Employee salaries might have to be in the range 25K to 95K.

I Department budgets might have to be in the range 1M to 15M.

Integrity constraints
DEPT DEPT# DNAME BUDGET

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

EMP EMP# ENAME DEPT# SALARY
E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

Some integrity constraints are very important and enjoy some special
nomenclature. Example:

I Each row in the table DEPT must include a unique DEPT# value.

I Each row in the table EMP must include a unique EMP# value.

I The DEPT# column in DEPT is a primary key for the DEPT table.

I The EMP# column in EMP is a primary key for the EMP table.

Integrity constraints
DEPT DEPT# DNAME BUDGET

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

EMP EMP# ENAME DEPT# SALARY
E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

More constraints of the similar fashion:

I Each DEPT# value in EMP must exist as a DEPT# value in
DEPT: Every employee must be assigned to an existing
department.

I The DEPT# column in EMP is a foreign key, referencing the
primary key of table DEPT.

Outline

The Three Levels of the Architecture
The External Level
The Conceptual Level
The Internal Level

The Relational Model
An Informal Look
Data Structure. Types and Relations

Types

I Type is a set of values.
I Examples: INTEGER (the set of all integers), CHAR (the

set of all character strings), S# (the set of all supplier
numbers), WEEKDAY (Monday–Sunday).

I Types are also called domains.
I Types are either system-defined (built-in) or user-defined.
I Any type can be used as the basis for declaring relational

attributes.
I Purpose of types: To constrain values

Types

I Any given type has an associated set of operators.
I For the system-defined type INTEGER:

I The system provides operators “=”, “<”, and so on, for
comparing integers.

I It also provides operators “+”, “*”, for performing arithmetic
on integers.

I It does not provide operators like “||” (concatenate),
SUBSTR (substring), so on, for performing string
operations on integers.

I For the user-defined type S#:
I We would probably define operators “=”, “<”, and so on, for

comparing supplier numbers.
I We would probably not define operators “+”, “*”, for

performing arithmetic on supplier numbers.

Values vs Variables

I Value: an individual constant (e.g. the integer 3).
I A value can not be updated.
I Variable is a holder for an appearance of a value.
I Variables can be updated: the current value of the variable

in question can be replaced by another value.

Values, Variables, Types

I Every value is of some unique type which never changes.
I Distinct types are disjoint.
I Every variable is explicitly declared to be of some type.
I Every attribute, operator, parameter of an operator is

explicitly declared to be of some type.
I Every expression is at least implicitly declared to be of

some type (of the type declared for the outermost
operator).

Scalar vs Nonscalar Types

Any given type is either scalar or nonscalar.
I A nonscalar type is a type whose values are explicitly

defined to have a set of directly accessible components.
I Otherwise, the type is scalar.
I Values, variables, attributes, operators, parameters,

expressions are scalar or nonscalar depending on the
corresponding type.

Scalar vs Nonscalar Types

I Values of type T must have at least one possible
interpretation (declared as part of the definition of type T).

I Distinguish between accessible components of a type and
accessible components of its representation.

I Type may be scalar, but its possible representation may
have accessible components.

I Type definition (in a relational language):
TYPE QTY POSSREP { INTEGER } ;

I QTY is scalar, but its possible representation has an
accessible component, of type INTEGER.

Scalar vs Nonscalar Types

I Another example of type definition:
TYPE Point

POSSREP CARTESIAN { X RATIONAL, Y RATIONAL
}

POSSREP POLAR { R RATIONAL, θ RATIONAL };
I Two distinct possible representations.
I Each of these representations has two accessible

components, of type RATIONAL.
I POINT is of scalar type: does not have accessible

components.
I Nonscalar type definitions come later.
I Types can be defined in terms of user-defined typed:

TYPE LINESEG POSSREP { BEGIN POINT, END
POINT }

Type Operators

Each POSSREP declaration causes automatic definition of two
operators:

I A selector operator: Allows the user to specify or select a
value of the type by supplying a value for each component
of the possible representation.

I A set of THE_ operators (one for each component of
possible representation): Allows to access the
corresponding possible-representation components of
values of the type.

I Selectors have the same name as the corresponding
possible representation.

I THE_ operators have the name THE_C, where C is the
name of the corresponding component of the
corresponding possible representation.

Type Operators

Example

I CARTESIAN (5.0, 2.5)
I CARTESIAN (X1, Y1)
I POLAR (2.7, 1.0)
I THE_X (P) (The X coordinate of the point in P, where P is

a variable of type POINT)
I THE_Y (exp) (The Y coordinate of the point denoted by

the expression exp).

Type Definitions

Two ways of type definitions:
I By a TYPE statement.
I By a type generator.

TYPE statement

Example:
I TYPE WEIGHT POSSREP { D DECIMAL (5,1)

CONSTRAINT D > 0.0 AND D < 5000.0 };
I Weights can possible be represented by decimal number of

five digits precision with one digit after the decimal number.
I The decimal number is greater than 0 and less than 5000.

Operators

I Two kinds: read-only and updates.
I Definition of read-only operators involves RETURNS

specification.
I Definition of update operators involves UPDATES

specification.

Read-Only Operators

Examples:
I OPERATOR ABS (Z RATIONAL) RETURNS RATIONAL ;

RETURN (CASE
WHEN Z ≥ 0.0 THEN +Z
WHEN Z < 0.0 THEN -Z

END CASE) ;
END OPERATOR ;

I OPERATOR GT (Q1 QTY, Q2 QTY) RETURNS BOOLEAN
RETURN (THE QTY (Q1) > THE_QTY (Q2)) ;

END OPERATOR ;

Update Operators

Example:
I OPERATOR REFLECT (P POINT) UPDATES P ;

BEGIN ;
THE_X (P) := − THE_X (P)
THE_Y (P) := − THE_Y (P)
RETURN

END ;
END OPERATOR ;

Type Generators

I Type generator is an operator that returns a type.
I ARRAY INTEGER [8]

ARRAY type generator generates an array of integers of
size 12.

I VAR SALES ARRAY INTEGER [8]
Declares variable SALES of type ARRAY INTEGER [8].

I Selector and THE_ operators exist for generated types:
ARRAY INTEGER (2, 5, 3, 67, 23, 12, 32, 78)
SALES [3]

I Assignment and equality comparison operators also apply:
SALES := ARRAY INTEGER (2, 5, 3, 67, 23, 12, 32, 78)
SALES = ARRAY INTEGER (2, 5, 3, 67, 23, 12, 32, 78)

Relations

I Up to now we discussed type, values, and variables in
general.

I Next: Relations types, values, and variables in particular.
I Will continue on the next lecture.

	The Three Levels of the Architecture
	The External Level
	The Conceptual Level
	The Internal Level

	The Relational Model
	An Informal Look
	Data Structure. Types and Relations

