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Integrity Constraints

I Integrity Constraint: A boolean expression that is
associated with some database and is required to evaluate
at all times to TRUE.



Integrity Constraints. Examples

Suppliers-and-parts database satisfies the constraints:
I Every supplier status value is in the range 1 to 100

inclusive.
I Every supplier in London has status 20.
I If there are any parts at all, at least one of them is blue.
I No two distinct suppliers have the same supplier number.
I etc.

All examples today from suppliers-and-parts database.



Integrity Constraints

I Constraints must be formally declared to the DBMS and
DBMS must enforce them.

I Declaring constraints is a matter of using relevant features
of the database language.

I Enforcing them is a matter of the DBMS monitoring
updates that might violate the constraints and rejecting
those that do.

Example
To enforce the constraint Every supplier status value is in the
range 1 to 100 inclusive, the DBMS will have to monitor all
operations that attempt

I to insert a new supplier, or
I change an existing supplier’s status.



Integrity Constraints

I Overall “shape” of integrity constraints:
IF
a certain tuple appears in certain relvars,
THEN
that tuple satisfies a certain condition.



Classification of Constraints

I Type constraint: A definition of the set of values that
constitute a given type.

I Attribute constraint: Constrains values a given attribute is
permitted to assume.

I Relvar constraint: Constrains values a given relvar is
permitted to assume.

I Database constraint: Constrains values a given database
is permitted to assume.



Type Constraints

I Definition of the set of values that constitute a given type.
I Example:

TYPE WEIGHT POSSREP { D DECIMAL (5,1) }
CONSTRAINT D > 0.0 AND D < 5000.0

I Meaning:
Legal values of type WEIGHT are precisely those

I that can possibly be represented by decimal numbers of
five digits precision with one digit after the decimal point,

I where the decimal number in question is greater than zero
and less than 5000.

I Type constraints are thought of being checked during the
execution of some selector invocation.

I WEIGHT ( 7500.0 ) will raise an exception at run time
(value out of range).



Attribute Constraints

I Declaration to the effect that a specified attribute of a
specified relvar is of a specified type.

I Example:
VAR S BASE RELATION
{ S# S#

SNAME NAME
STATUS INTEGER
CITY CHAR } . . . ;

I Part of the attribute definition itself, can be identified by the
corresponding attribute name.



Relvar Constraints

I Constrain possible values of a given relvar.
I Example:

I Every supplier status value is in the range 1 to 100
inclusive.

I For all supplier numbers s#, all names sn, all integers st
and all character strings sc:

I IF a tuple with S# s#, SNAME sn, STATUS st , and CITY sc
appears in the suppliers relvar S,

I THEN st is greater than or equal to 1 and less than or equal
to 100.

I Constraint for S.



Relvar Constraints

I Any given relvar can be subject to many constraints.
I Example:

I Every supplier status value is in the range 1 to 100
inclusive.

I No two distict suppliers have the same supplier number.
I The relvar constraint: Conjunction of all constraints for the

relvar.
I Golden Rule:

I No update operation must ever assign to any relvar R a
value that causes the constraint for R to evaluate to FALSE.



Database Constraints

I Database constraint: Conjunction of all the relvar
constraints for all relvars contained in the database.

I Golden Rule:
I No update operation must ever assign to any database a

value that causes even the database constraint to evaluate
to FALSE.



Integrity and Views

I Constrained relvars can be both base relvars and views.
I If a view RV is derived from a base relvar RB, then a

constraint for RV can be derived from the corresponding
constraint for RB just at RV is derived from RB.



Integrity and Views

Example
Let SST be a view obtained by projecting S over S#, SNAME, and
STATUS:

S S# SNAME ST CITY SST S# SNAME ST
S1 Smith 20 London S1 Smith 20
S2 Jones 10 Paris S2 Jones 10
S3 Blake 30 Paris S3 Blake 30
S4 Clark 20 London S4 Clark 20
S5 Adams 30 Athens S5 Adams 30

I Constraint: Every supplier status value is in the range 1 to 100
inclusive.



Integrity and Views

Example
Let SST be a view obtained by projecting S over S#, SNAME, and
STATUS:

S S# SNAME ST CITY SST S# SNAME ST
S1 Smith 20 London S1 Smith 20
S2 Jones 10 Paris S2 Jones 10
S3 Blake 30 Paris S3 Blake 30
S4 Clark 20 London S4 Clark 20
S5 Adams 30 Athens S5 Adams 30

I Constraint: Every supplier status value is in the range 1 to 100
inclusive.

I For S: For all supplier numbers s#, all names sn, all integers
st and all character strings sc:

I IF a tuple with S# s#, SNAME sn, STATUS st , and CITY
sc appears in the relvar S, THEN 1 ≤ st ≤ 100.



Integrity and Views

Example
Let SST be a view obtained by projecting S over S#, SNAME, and
STATUS:

S S# SNAME ST CITY SST S# SNAME ST
S1 Smith 20 London S1 Smith 20
S2 Jones 10 Paris S2 Jones 10
S3 Blake 30 Paris S3 Blake 30
S4 Clark 20 London S4 Clark 20
S5 Adams 30 Athens S5 Adams 30

I Constraint: Every supplier status value is in the range 1 to 100
inclusive.

I For SST: For all supplier numbers s#, all names sn, and all
integers st :

I IF a tuple with S# s#, SNAME sn, STATUS st , appears
in the relvar SST, THEN st 1 ≤ st ≤ 100.



Keys

Candidate Key

I Let K be a set of attributes of relvar R. Then K is a
candidate key for R iff it has both of the following
properties:

I Uniqueness: No legal value of R ever contains two distinct
tuples with the same value for K .

I Irreducibility: No proper subset of K has the uniqueness
property.

I Every relvar has at least one candidate key.
I candidate keys do not include any attributes that are

irrelevant for unique identification purposes.



Keys

Example
Examples of Candidate Keys.

I VAR S BASE RELATION
{ S# S#

SNAME NAME
STATUS INTEGER
CITY CHAR }

KEY { S# }
Simple candidate key.

I VAR SP BASE RELATION
{ S# S#

P# P#
QTY QTY }

KEY { S#, P# }
Composite candidate key.



Keys

Example
Examples of Candidate Keys.

I Several candidate keys are possible
VAR MARRIAGE BASE RELATION
{ HUSBAND NAME

WIFE NAME
DATE DATE }

KEY { HUSBAND, DATE }
KEY { DATE, WIFE }
KEY { WIFE, HUSBAND }



Keys

I A candidate key definition is a shorthand for a certain
relvar constraint.

Example

I { S# } is a candidate key.
I Corresponding constraint: No two distinct suppliers have

the same supply number.
I A bit more formally:

For all supplier numbers x# and y#, all names xn and yn,
all integers xt and yt , and all character strings xc and yc:

I IF tuples with
S# x#, SNAME xn, STATUS xt , CITY xc and
S# y#, SNAME yn, STATUS yt , CITY yc

appear in the suppliers relvar S,
I THEN IF x#= y#

THEN xn = yn, xt = yt , and xc = yc.



Keys

I A given relvar can have two or more candidate keys.
I Exactly one of those keys (at least for base relvars) are

chosen as the primary key.
I The others are called alternate keys.



Keys

I A foreign key in a relvar R2 is a set of attributes of R2, say
FK , such that:

I There exists a relvar R1 (R1 and R2 not necessarily distinct)
with a candidate key CK .

I Each value of FK (or a renamed copy of FK ) in the current
value of R2 is identical to the value of CK in some tuple in
the current value of R1.

I Points:
I Every value of FK must appear as a value of CK , the

converse is not necessary.
I FK is simple or composite according as CK is simple or

composite.
I An FK value represents a reference to the tuple containing

the matching CK value (the referenced tuple).
I The constraint that values of FK must match the values of

CK is known as referential constraint.
I R2 is the referencing relvar and R1 is a referenced relvar.
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Keys

I A foreign key in a relvar R2 is a set of attributes of R2, say
FK , such that:
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Keys

I Referential constraints in the suppliers-and-parts database
can be represented by means of the referential diagram:
S←S# SP→P# P.

I A given relvar can be both referenced and referencing:
Rn → Rn−1 → · · · → R1.
Referential chain from Rn to R1.

I A relvar might include a foreign key whose values are
required to match the values of some candidate key in the
same relvar (self-referencing):

VAR EMP BASE RELATION
{ EMP# EMP#, . . . MGR_EMP# MGR_EMP#, . . . }

KEY { EMP# }
FOREIGN KEY { RENAME MGR_EMP# AS EMP# }

REFERENCES EMP
I Referencing cycles are allowed.



Keys

I The relational model includes the following rule:
Referential Integrity: The database must not contain any
unmatched foreign key values.



Keys

I A foreign key definition is a shorthand for a certain relvar
constraint:

Example

I { S# } is a foreign key for shipments.
I Constraint: Every shipment involves an existing supplier

(supplier-and-parts db).
I A bit more formally:

For all supplier number s#, all part number p#, and all
integers q:

I IF a tuple with S# s#, P# p#, QTY q appears in the
shipments relvar SP,

I THEN there exists a name sn, an integer st , and a
character string sc such that the tuple with S# s#, SNAME
sn, STATUS st , CITY sc appears in the suppliers relvar S.



Referential Actions

Example

I DELETE S WHERE S# = S# (’S1’) ;
I Deletes supplier tuple for S1.
I Assume:

I The database includes some shipments for S1
I The application does not delete those shipments.

I Then the system raises an exception when it checks the
referential constraint from shipments to suppliers.

Alternative approach possible.



Referential Actions

Example
Alternative Approach

I DELETE S WHERE S# = S# (’S1’) ;

I Deletes supplier tuple for S1.

I Alternative approach: If the database includes some shipments
for S1, delete those shipments as well.

I The effect achieved by extending the foreign key definition:

VAR SP BASE RELATION { . . . } . . .
FOREIGN KEY { S# } REFERENCES S

ON DELETE CASCADE ;

I ON DELETE CASCADE defined a delete rule for the foreign key.

I CASCADE: referential action. The DELETE operation on S will
cascade to delete matching tuples in the shipments relvar as
well.



Referential Actions

I RESTRICT: Another common referential action (do not
confuse with the RESTRICT operator from relational
algebra).

I In case of DELETE (previous example), the RESTRICT
action would mean that the operation is restricted to the
case when there are no matching shipments.

I Otherwise, the operations are rejected.
I Omitting a referential action for a particular foreign key is

equivalent to specifying to NO ACTION.
I Referential actions make sense also for UPDATE.



Triggers

I A trigger is a statement (in the query language) the DBMS
executes automatically whenever a set of conditions
becomes true.

Example

I Let LONDON_SUPPLIER be a view:
CREATE VIEW LONDON_SUPPLIER

AS SELECT S#, SNAME, STATUS
FROM S
WHERE CITY = ’London’ ;

I When trying to insert a row in this view, a row will be
inserted in the underlying base table S with the default
value for CITY.

I If the default value is not ’London’, the row will not appear
in the view.



Triggers

Example (Cont.)

I Create a triggered procedure:
CREATE TRIGGER LONDON_SUPPLIER_INSERT

INSTEAD OF INSERT ON LONDON_SUPPLIER
REFERENCING NEW ROW AS R
FOR EACH ROW
INSERT INTO S ( S#, SNAME, STATUS, CITY )

VALUES ( R.S#, R.SNAME, R.STATUS, ’London’ );



Triggers

Example (Cont.)

I Create a triggered procedure:
CREATE TRIGGER LONDON_SUPPLIER_INSERT

INSTEAD OF INSERT ON LONDON_SUPPLIER
REFERENCING NEW ROW AS R
FOR EACH ROW
INSERT INTO S ( S#, SNAME, STATUS, CITY )

VALUES ( R.S#, R.SNAME, R.STATUS, ’London’ );

I Inserting a row in the view will cause a row to be inserted into the
underlying base table with CITY value equal to London instead
of the default value, and the new row will appear in the view.



Triggers

Example (Cont.)

I Create a triggered procedure:
CREATE TRIGGER LONDON_SUPPLIER_INSERT

INSTEAD OF INSERT ON LONDON_SUPPLIER
REFERENCING NEW ROW AS R
FOR EACH ROW
INSERT INTO S ( S#, SNAME, STATUS, CITY )

VALUES ( R.S#, R.SNAME, R.STATUS, ’London’ );

I CREATE TRIGGER specifies

I The event: an operation on the database (INSERT ON
LONDON_SUPPLIER).

I The condition: a boolean expression that has to evaluate to
true in order the action to be executed (No condition
specified explicitly in the example above);

I The action: the triggered procedure proper (INSERT
INTO S).
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Functional Dependencies

I Functional Dependence (FD): Many-to-one relationship
from one set of attributes to another within a given relvar,
satisfying certain conditions.

I Should distinguish clearly between
(a) the value of a given relvar at a given point of time, and
(b) the set of possible values that the given relvar might

assume at different times.



Functional Dependencies

Functional Dependence, Case (a)

I Let r be a relation, and X and Y be arbitrary subsets of the
set of attributes of r .

I Y is functionally dependent on X , written X → Y iff
whenever two tuples of r agree on their X value, they also
agree on their Y value.



Functional Dependencies

Example
Functional Dependence, Case (a)

SPC S# CITY P# QTY
S1 London P1 100
S1 London P2 100
S2 Paris P1 200
S2 Paris P2 200
S3 Paris P2 300
S4 London P2 400
S4 London P4 400
S4 London P5 400

FD’s:
{S#} → {CITY}

{S#, P#} → {QTY}
{S#, P#} → {CITY}
{S#, P#} → {S#}
{S#, P#} → {S#, P#,

CITY , QTY}
{S#} → {QTY}
{QTY} → {S#}



Functional Dependencies

Functional Dependence, Case (b)

I Let R be a relation variable, and X and Y be arbitrary
subsets of the set of attributes of R.

I Y is functionally dependent on X , written X → Y iff in
every possible value legal of R, whenever two tuples agree
on their X value, they also agree on their Y value.



Functional Dependencies

Example
Functional Dependence, Case (b)

SPC S# CITY P# QTY
S1 London P1 100
S1 London P2 100
S2 Paris P1 200
S2 Paris P2 200
S3 Paris P2 300
S4 London P2 400
S4 London P4 400
S4 London P5 400

Some of the
FD’s for SCP:

{S#, P#} → {QTY}
{S#, P#} → {CITY}
{S#, P#} → {S#}
{S#, P#} → {S#, P#,

CITY , QTY}
{S#} 6→ {QTY}
{QTY} 6→ {S#}



Functional Dependencies

I From now on FD refers to FD, case (b).
I If X is a candidate key for relvar R, then all attributes Y of

R must be functionally dependent on X .
I FD for a given relvar can be large.
I Problem: Find a smaller (ideally, minimal) subset of FD’s

for a given relvar that implies all the FD’s for that relvar.
I Why is this problem interesting?

I FD’s are certain integrity constraints.
I DBMS should enforce them.
I If we find a smaller subset required in the problem

statement, it sufficient the DBMS to enforce just FD’s from
that subset. All the other FD’s will be enforced
automatically.



Functional Dependencies

I Trivial FD: Right side is a subset of the left side
(e.g., {S#, P# }→ { P#}).

I Trivial dependencies are not interesting in practice.



Functional Dependencies

I A, B, C – arbitrary subsets of the set of attributes of the
given relvar R.

I Armstrong’s axioms:
I Reflexivity: If B ⊆ A, then A→ B.
I Augmentation: If A→ B, then A ∪ C → B ∪ C.
I Transitivity: If A→ B and B → C, then A→ C.

I Armstrong’s axioms are sound and complete.



Functional Dependencies

Additional rules (follow from Armstrong’s axioms):
I Self-determination: If A→ A.
I Decomposition: If A→ B ∪ C, then A→ B and A→ C.
I Union: If A→ B and A→ C, then A→ B ∪ C.
I Composition: If A→ B and C → D, then A ∪ C → B ∪ D.



Functional Dependencies

Example

I Given: relvar R with attributes a, b, c, d , e, f and FD’s:
{a} → {b, c}, {b} → {e}, {c, d} → {e, f}.

I Show: {a, d} → {f} holds for R.
I 1. {a} → {b, c} (given)

2. {a} → {c} (1, decomposition)
3. {a, d} → {c, d} (2, augmentation)
4. {c, d} → {e, f} (given)
5. {a, d} → {e, f} (3 and 4, transitivity)
6. {a, d} → {f} (5, decomposition)



Functional Dependencies. Computing the Closure

I Given: a relvar R, a set of attributes Z for R, and a set S of
FD’s that hold for R.

I Compute: The set of all attributes of R that are functionally
dependent on Z—the closure Z+ of Z under S.

I Algorithm:
CLOSURE [Z , S] := Z ;
do “Forever” ;

for each FD X → Y in S
do ;

if X ⊆ CLOSURE [Z , S]
then CLOSURE [Z , S] := CLOSURE [Z , S] ∪ Y ;

end
if CLOSURE [Z , S] did not change on this iteration
then leave the loop ;

end



Functional Dependencies. Computing the Closure

Example

I Given: a relvar R with attributes a, b, c, d , e, f and FD’s:
{a} → {b, c}
{e} → {c, f}
{b} → {e}
{c, d} → {e, f}

I Compute: The closure of {a, b}.
I Computation:

1. Initialization: The closure is {a, b}
2. After the first iteration of the algorithm: {a, b, c, e}
3. After the second iteration: {a, b, c, e, f}
4. After the third iteration: {a, b, c, e, f}
5. Answer: {a, b, c, e, f}.



Functional Dependencies

Important corollary:
I Given: A set S of FD’s.
I Decide: Does a specific FD X → Y follow from S?
I Decision procedure:

1. Compute the closure X+ of X under S.
2. Check whether Y is a subset of X+.
3. If yes, X → Y follows from S, and does not, otherwise. (No

need to compute S+.



Functional Dependencies

I If S1 and S2 are two sets of FD’s with S+
1 ⊆ S+

2 , then S2 is
called a cover of S1.

I If DBMS enforces the FD’s in S2, then it will automatically
be enforcing those in S1.

I If S+
1 = S+

2 , then S1 and S2 are equivalent.
I A set S of FD’s is irreducible iff

1. The right side of every FD in S is a singleton set.
2. The left side of each FD in S is irreducible—no attribute can

be discarded from them without changing S+.
3. No FD can be discarded from S without changing S+.

I Every set of FD’s is equivalent to at least one irreducible
set.



Functional Dependencies

Every set of FD’s is equivalent to at least one irreducible set.
I Let S be a set of FD’s.
I By the decomposition rule, we can assume w.l.o.g. that

every FD in S has a singleton rhs.
I For each f ∈ S examine each attribute a in the lhs of f :

I If deleting a from the lhs of f does not affect S+, delete a
from the lhs of f .

I For each FD f remaining in S, if deleting f from S has no
effect on S+, delete f from S.

The final S is irreducible and equivalent to the original set S.



Summary

I The integrity problem is the problem to ensure that the
data is consistent.

I Integrity constraints take the general form:
IF
a certain tuple appears in certain relvars,
THEN
that tuple satisfies a certain condition.

I The relvar constraint (the relvar predicate) is the
conjunction of all constraints for the relvar.

I The database constraint (the database predicate) is the
conjunction of all the constraints for all relvars in the
database.

I The Golden Rule:
I No update operation must ever assign to any relvar R a

value that causes the constraint for R to evaluate to FALSE.



Summary

I The integrity constraints represent the meaning of the data
(semantics).

I Integrity constraints into four categories:
I Type constraints.
I Attribute constraints.
I Relvar constraints.
I Database constraints.

I Keys: candidate, primary, alternate, foreign.
I Candidate keys satisfy uniqueness and irreducibility

properties.



Summary

I Referential constraint: Values of a given foreign key must
match the values of the corresponding candidate key.

I Referential actions and triggers.



Summary

I Functional dependency: A many-to-one relationship
between two sets of attributes of given relvar, satisfying a
certain functionality condition.

I Trivial FD: Right side is a subset of the left side.
I Given a set S of FD’s, the closure S+ of that set is the set

of all FD’s implied by the FD’s in S.
I Armstrong’s axioms provide a sound and complete rules to

compute the closure of a given set of FD’s.



Summary

I Given a subset Z of the set of attributes of relvar R and a
set S of FD’s that hold for R, the closure Z+ of Z under S
is the set of all attributes A of R such that the FD
Z → A ∈ S+.

I We gave a simple algorithm for computing Z+ from Z and
S.

I Using the algorithm, one can determine whether a given
FD X → Y belongs to S+: Just check whether Y ∈ X+.

I Two sets of FD’s S1 and S2 are equivalent iff they are
covers of each other: S+

1 = S+
2 .

I Every set of FD’s is equivalent to at least one irreducible
set.

I If I is an irreducible set equivalent to S, enforcing the FD’s
in I will automatically enforce the FD’s.
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