
Information Systems
XQuery

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

What Is XQuery

I The purpose of XQuery is to provide a language for
extracting data from XML documents.

I Queries can operate on more than one documents at
once. Subsets of nodes can be selected using XPath
expressions.

I The query language is functional (but it also includes
universal and existential quantifiers), supports simple and
complex data types defined in XML Schema.

I Just as in XSLT, the XPath expressions play the central
role in XQuery.

I The value of an expression is always a sequence, having
some sequence type.

Simple Examples

vehicles.xml. A Sample XML Document Containing Vehicle
Data:

<?xml version="1.0" encoding="utf-8"?>
<vehicles>
<vehicle year="2004" make="Acura" model="3.2TL">
<mileage>13495</mileage>
<color>green</color>
<price>33900</price>
<options>
<option>navigation system</option>
<option>heated seats</option>

</options>
</vehicle>

...

Simple Examples

vehicles.xml. A Sample XML Document Containing Vehicle
Data (cont):

<vehicle year="2005" make="Acura" model="3.2TL">
<mileage>07541</mileage>
<color>white</color>
<price>33900</price>
<options>
<option>spoiler</option>
<option>ground effects</option>

</options>
</vehicle>
<vehicle year="2004" make="Acura" model="3.2TL">
<mileage>18753</mileage>
<color>white</color>
<price>32900</price>
<options />

</vehicle>

</vehicles>

Simple Examples

I The query that retrieves all of the color elements from the
vehicles:
xquery version "1.0";
for $c in doc("vehicles.xml")//color

return $c

I Output:
<?xml version="1.0" encoding="UTF-8"?>
<color>green</color>
<color>white</color>

<color>white</color>

I Explanation:
I doc("vehicles.xml") is used to open vehicles.xml file.
I doc("vehicles.xml")//color selects all color

elements in the document.
I $c is a variable.

Simple Examples

Using filters:
I Return any vehicle elements that contain a color element

with a value of green:
xquery version "1.0";
for $v in doc("vehicles.xml")//vehicle[color=’green’]

return $v

I Output:
<?xml version="1.0" encoding="UTF-8"?>
<vehicle year="2004" make="Acura" model="3.2TL">
<mileage>13495</mileage>
<color>green</color>
<price>33900</price>
<options>
<option>navigation system</option>
<option>heated seats</option>

</options>

</vehicle>

Simple Examples

Using filters:
I Find all of the vehicles with a color of green or a price less

than 34000:
xquery version "1.0";
for $v in
doc("vehicles.xml")//vehicle[color=’green’ or

price<’34000’]

return $v

Simple Examples

Using filters:
I Find options of all the white cars:
//vehicle[color=’white’]/options

Using wildcards:
I Find the option elements that are one layer below
vehicle:
for $o in vehicles/vehicle/*/option
return $o

Simple Examples

Referencing attributes:
I Find all the year attributes of vehicle elements:
//vehicle/@year

I Return all of the vehicle elements that have year attributes
as well:
//vehicle[@year]

I Return all the vehicle elements that have a year attribute
with the value 2005:
for $v in //vehicle[@year="2005"]
return $v

Simple Examples

Processing results:
I Query results can be packaged within other surrounding

XML code to create transformed data.
I To incorporating query results into surrounding code, query

data is put within curly braces ({}).
I Access the content within a node by calling the XQuery
data() function and supplying it with the node in question.

I Query:
for $c in //color

return <p>Vehicle color: {data($c)}</p>

I Output:
<?xml version="1.0" encoding="UTF-8"?>
<p>Vehicle color: green</p>
<p>Vehicle color: white</p>

<p>Vehicle color: white</p>

XQuery Processor

I To execute queries, XQuery processor should be isntalled.
I We use the same tool as for XSLT: The SAXON XSLT and

XQuery Processor.
http://saxon.sourceforge.net/.

I XQuery documents are stored in files with a .XQ file extension.
I In addition to the query code, all XQuery documents are

required to start with the following line of code:
xquery version "1.0";

I Command that executes XQuery document query.xq on the data
file data.xml
bin\Query -s data.xml query.xq > out.html

I (Full path information has to be included for the files involved.)

FLWOR Expressions
I FLWOR is an acronym for “For, Let, Where, Order by, Return”.

Reads as “flower”.
I xquery version "1.0";

<p>
for $v in //vehicle
let $y := $v/price
where $v/mileage > ’10000’
order by $y
return
<div>{data($v/@model)} - {data($y)}</div>

</p>

I for - (optional) binds a variable to each item returned by the in
expression

I let - (optional)
I where - (optional) specifies criteria
I order by - (optional) specifies the sort-order of the result
I return - specifies what to return in the result

FLWOR Expressions

I The for clause binds a variable to each item returned by
the in expression.

I The for clause results in iteration.
I There can be multiple for clauses in the same FLWOR

expression.
I To loop a specific number of times in a for clause, you may

use the to keyword:
for $x in (1 to 3)
return <test>$x</test>

I Returns
<test>1</test>
<test>2</test>
<test>3</test>

FLWOR Expressions

I It is allowed with more than one in expression in the for
clause.

I Use comma to separate each in expression:
for $x in (10,20), $y in (100,200)
return <test>x=$x and y=$y</test>

I Result:
<test>x=10 and y=100</test>
<test>x=10 and y=200</test>
<test>x=20 and y=100</test>
<test>x=20 and y=200</test>

FLWOR Expressions

I The let clause allows variable assignments and avoids
repeating the same expression many times.

I The let clause does not result in iteration.
let $x := (1 to 5)
return <test>$x</test>

I Result:
<test>1 2 3 4 5</test>

FLWOR Expressions

I The where clause is used to specify one or more criteria
for the result.

I The order by clause is used to specify the sort order of
the result.

I The return clause specifies what is to be returned.

Basic Syntax Rules

I XQuery is case-sensitive
I XQuery elements, attributes, and variables must be valid

XML names
I An XQuery string value can be in single or double quotes
I An XQuery variable is defined with a $ followed by a name,

e.g. $vehicle
I XQuery comments are delimited by (: and :), e.g. (:
XQuery Comment :)

Conditional Expressions

xquery version "1.0";
<p>
{
for $v at $i in //vehicle
return if (data($v/options) != "")
then
<div>Options for $i: data($v/options)</div>

else
<div>The vehicle $i has no options</div>

}

</p>

XQuery Comparisons

I Two ways of comparing values.
1. General comparisons: =, !=, <, <=, >, >=
2. Value comparisons: eq, ne, lt, le, gt, ge

I Difference between the two comparison methods:
I //vehicle/@year > ’2004’

Returns true if any year attributes have values greater
than ’2004’.

I //vehicle/@year gt ’2004’
Returns true if there is only one year attribute returned by
the expression, and its value is greater than ’2004’. If more
than one year is returned, an error occurs.

XQuery Functions

I XQuery includes over 100 built-in functions.
I Users can also define their own functions.
I The URI of the XQuery function namespace is:
http://www.w3.org/2005/02/xpath-functions

I The default prefix for the function namespace is fn: (e.g.
fn:string())

I Since fn: is the default prefix of the namespace, the
function names do not need to be prefixed when called.

XQuery Functions

I A call to a function can appear where an expression may
appear.

I In an element:
<name>{uppercase(//vehicle/@make)}</name>

I In the predicate of a path expression:
//options[substring(option,1,6)=’ground’]

I In a let clause:
let $name := (substring($option,1,6))

XQuery Functions

I User-defined functions can be defined in the query or in a
separate library.

I Syntax:
declare function
prefix:function_name($parameter AS datatype)
AS returnDatatype

{
(: ...function code here... :)

};

I Use the declare function keyword.
I The name of the function must be prefixed.
I The data type of the parameters are mostly the same as

the data types defined in XML Schema.
I The body of the function must be surrounded by curly

braces.

XQuery Functions

I User-defined Function Declared in the Query:
declare function local:minPrice(
$price as xs:decimal?,
$discount as xs:decimal?)

AS xs:decimal?
{
let $disc := ($price * $discount) div 100
return ($price - $disc)

};

I An example of how to call this function:
<minPrice>{local:minPrice($book/price,
$book/discount)}</minPrice>

References

For the details on data model and types see the lecture notes
and

XQuery.
http://www.w3.org/TR/xquery/

Quick XQuery tutorials:

Michael Morrison.
Sams Teach Yourself XML in 24 Hours, Third Edition
Sams, 2005.

XQuery tutorial.
http://www.w3schools.com/xquery/

