Lineare Algebra und Analytische Geometrie 1 (WS 08/09)

7. Übungsblatt

(auszuarbeiten bis 15. Dezember 2008)

7.1 (Diedergruppe)

Sei S(M) die Menge aller bijektiven Funktionen auf einer Menge M.

- (a) Bestimmen Sie $S(\{1,2,3\})$.
- (b) Zeigen oder widerlegen Sie, dass $(S(\{1,2,3\}), \circ)$ eine Gruppe ist.

(Hinweis: $S(\{1,2,3\})$ hat 6 Elemente.)

(Hinweis: Ein Verweis auf Beispiel 1.5.6.(6) ist natürlich nicht genug.)

7.2 (Diedergruppe)

Sei $M := \{1, 2, 3\}$,

$$f_{1,3}: M \to M$$

$$1 \mapsto 3$$

$$2 \mapsto 2$$

$$3 \mapsto 1.$$

und $H := \{ id_M, f_{1,3} \}$.

- (a) Zeigen oder widerlegen Sie, dass (H, \circ) eine Untergruppe von $(S(\{1, 2, 3\}), \circ)$ ist.
- (b) Zeigen oder widerlegen Sie, dass es eine Untergruppe von $(S(\{1,2,3\}), \circ)$ mit genau drei Elementen gibt.

7.3 (Diedergruppe)

Seien M und H wie in Beispiel 7.2.

- (a) Zeigen oder widerlegen Sie, dass $(S(M), \circ)$ abelsch ist.
- (b) Zeigen oder widerlegen Sie, dass (H,\circ) abelsch ist.

7.4 (Diedergruppe)

Seien M und H wie in Beispiel 7.2.

- (a) Zeigen oder widerlegen Sie, dass $(S(M), \circ)$ zyklisch ist.
- (b) Zeigen oder widerlegen Sie, dass (H,\circ) zyklisch ist.

7.5 (Diedergruppe)

Seien M und H wie in Beispiel 7.2.

- (a) Bestimmen Sie alle Linksnebenklassen von (H, \circ) in $(S(M), \circ)$.
- (b) Bestimmen Sie alle Rechtsnebenklassen von (H, \circ) in $(S(M), \circ)$.
- (c) Ist (H, \circ) Normalteiler von $(S(M), \circ)$?

7.6 (Matrixeigenschaften)

Sei R ein kommutativer Ring mit Einselement und $m, n \in \mathbb{N}^+$. Weiters seien $A, B \in \operatorname{Mat}_{m \times n}(R)$ und $\lambda, \mu \in R$. Zeigen oder widerlegen Sie folgende Eigenschaften ohne Sätze über Matrixeigenschaften zu verwenden.

- (a) $\lambda (A + B) = \lambda A + \lambda B$
- (b) $\lambda(\mu A) = (\lambda \mu) A$
- (c) (-1)A = -A

7.7 (Matrixeigenschaften)

Sei R ein kommutativer Ring mit Einselement und $m, n, p \in \mathbb{N}^+$. Weiters seien $A, B \in \operatorname{Mat}_{m \times n}(R)$, $C \in \operatorname{Mat}_{n \times p}(R)$ und $\lambda \in R$. Zeigen oder widerlegen Sie folgende Eigenschaften ohne Sätze über Matrixeigenschaften zu verwenden.

- (a) (A+B)C = AC + BC
- (b) $(\lambda A)C = \lambda(AC) = A(\lambda C)$

7.8 (Matrixeigenschaften)

(a) Finden Sie $m, n \in \mathbb{N}^+$ und $A, B, C \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ mit

$$AB = BA$$

$$AC \neq CA$$

oder zeigen Sie, dass solche m,n,A,B,Cnicht existieren.

(b) Zeigen oder widerlegen Sie

$$\left(A^T + B\right)^T = \left(A + B^T\right)$$

für quadratische Matrizen ohne Sätze über Matrixeigenschaften zu verwenden.

7.9 (Diagonalmatrizen)

Sei R ein kommutativer Ring mit Einselement und $m \in \mathbb{N}^+$. Weiters D eine Diagonalmatrix in $\operatorname{Mat}_{m \times m}(R)$.

Zeigen oder widerlegen Sie folgende Eigenschaften ohne Sätze über Matrixeigenschaften zu verwenden.

(a)
$$\forall n \in \mathbb{N} : D^n = \begin{pmatrix} d_{1,1}^n & 0 & 0 & \cdots & 0 \\ 0 & d_{2,2}^n & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & d_{m,m}^n \end{pmatrix}$$

(b) Es existiert eine Diagonalmatrix $D' \in \operatorname{Mat}_{m \times m}(R)$ mit $DD' = I_m$