
Research Report AI-1989-08E�cient Prolog: A Practical GuideMichael A. CovingtonArti�cial Intelligence ProgramsThe University of GeorgiaAthens, Georgia 30602August 16, 1989AbstractAbstract: Properly used, Prolog is as fast as any language with com-parable power. This paper presents guidelines for using Prolog e�-ciently. Some of these guidelines rely on implementation- dependentfeatures such as indexing and tail recursion optimization; others arematters of pure algorithmic complexity.Many people think Prolog is ine�cient. This is partly because of the poorperformance of early experimental implementations, but another problem isthat some programmers use Prolog ine�ciently.Properly used, Prolog performs automated reasoning as fast as any otherlanguage with comparable power. It is certainly as fast as Lisp, if not faster.There are still those who rewrite Prolog programs in C \for speed," but thisis tantamount to boasting, \I can implement the core of Prolog better thana professional Prolog implementor." 1

This paper will present some practical guidelines for using Prolog e�ciently.The points made here are general and go well beyond the implementation-speci�c advice normally given in manuals.1 Think procedurally as well as declara-tively.Prolog is usually described as a declarative or non-procedural language. Thisis a half-truth. It would be better to say that most Prolog clauses can beread two ways: as declarative statements of information and as proceduresfor using that information. For instance,in(X,usa) :- in(X,georgia).means both \X is in the U.S.A. if X is in Georgia" and \To prove that X isin the U.S.A., prove that X is in Georgia."Prolog is not alone in this regard. The Fortran statementX=Y+Zcan be read both declaratively as the equation x = y+z and procedurally asthe instructions LOAD Y, ADD Z, STORE X. Of course declarative readingspervade Prolog to a far greater extent than Fortran.Sometimes the declarative and procedural readings con
ict. For example,Fortran lets you utter the mathematical absurdity X=X+1. More subtly,the Fortran statementsA = (B+C)+DA = B+(C+D) 2

look mathematically equivalent, but they give profoundly di�erent resultswhen B=10000000, C=-10000000, and D=0.0000012345.Analogous things happen in Prolog. To take a familiar example, the clauseancestor(A,C) :-ancestor(A,B), ancestor(B,C).is part of a logically correct de�nition of \ancestor," but it can cause anendless loop when Prolog interprets it procedurally.The loop arises because, when B and C are both unknown, the goal ancestor(A,B)on the right is no di�erent from ancestor(A,C) on the left. The clause simplycalls itself with essentially the same arguments, making no progress towarda proof. But if the clause is rewritten asancestor(A,C) :-parent(A,B), ancestor(B,C).there is no loop because ancestor cannot call itself with the same arguments.The moral is that to use Prolog e�ectively, one must understand not only thedeclarative reading of the program but also the procedures that the computerwill follow when executing it. The limitations of Prolog's built-in proof pro-cedures are not
aws in the implementation; they are deliberate compromisesbetween logical thoroughness and e�cient search.2 Narrow the search.Searching takes time, and an e�cient program must search e�ciently. In aknowledge base that lists 1000 gray objects but only 10 horses, the query?- horse(X), gray(X).3

can be 100 times as fast as the alternative?- gray(X), horse(X).because it narrows the range of possibilities earlier.Many opportunities to narrow the search space are much more subtle. Con-sider the problem of determining whether two lists are set-equivalent | thatis, whether they have exactly the same elements, though not necessarily inthe same order.Two lists are set-equivalent if and only if one of them is a permutation of theother. One strategy, then, is to generate all the permutations of the �rst listand compare them to the second list:set_equivalent(L1,L2) :-permute(L1,L2).The trouble is that an N-element list has N! permutations; testing the set-equivalence of two 20-element lists can require 2.4 � 1018 comparisons. Ihave actually seen someone attempt this in a Prolog program.It is much faster to sort both lists and compare the results:set_equivalent(L1,L2) :-sort(L1,L3), sort(L2,L3).An N-element list can be sorted in about N log2 N steps | i. e., about 86steps per 20-element list | and each \step" involves considerably less workthan generating a new permutation. So this technique is faster than the �rstone by a factor of more than 1016. 4

3 Let uni�cation do the work.As a classroom exercise I ask my students to write a predicate that accepts alist and succeeds if that list has exactly three elements. Some of the weakeranswers that I get look like this:has_three_elements(X) :-length(X,N),N = 3.Slightly better are those that sayhas_three_elements(X) :-length(X,3).thereby letting the built-in pattern-matcher test whether length returns 3.But the best students cut the Gordian knot by writing:has_three_elements([_,_,_]).The point is that [_,_,_] matches any three-element list and nothing else.Uni�cation does all the work.Uni�cation can even rearrange the elements of a data structure. Here is apredicate that accepts a list and generates, from it, a similar list with the�rst two elements swapped:swap_first_two([A,B|Rest],[B,A|Rest]).Again, uni�cation does all the work. More precisely, the data structures[A,B|Rest] and [B,A|Rest], or templates for them, are created when theprogram is compiled, and uni�cation gives values to the variables at run time.5

4 Avoid assert and retract.Beginners tend to overuse the assert and retract predicates to modifythe knowledge base. There are two good reasons not to do so: assert andretract are relatively slow, and, perhaps more importantly, they lead tomessy logic.Even the slowness is twofold. It takes appreciable time to perform an assertor retract. Further, in most implementations, a predicate that has been (orcan be) modi�ed by assert or retract cannot run at full compiled speed.,(ALS Prolog is a striking exception.)More importantly, the haphazard use of assert and retract confuses theprogram logic. The e�ects of assert and retract are not undone by back-tracking. By contrast, most predicates return their results by instantiatingvariables; these instantiations are discarded if the overall goal fails, and youget only the results of computations that have succeeded. If you use assertas a general way to store temporary data, you will end up unable to tellwhether the data came from successful computations. This can make pro-grams very hard to debug.The normal way to store temporary information is to pass it along fromone step to the next as arguments to procedures. The legitimate uses ofassert and retract are to record new knowledge in the knowledge base(in a program that \learns") and, less commonly, to store the intermediateresults of a computation that must backtrack past the point at which itgets its result. Even in the latter case, the built-in predicates bagof andsetof often provide a better way to collect alternative solutions into a singlestructure. They are implemented in hand-optimized machine code and arefaster than anything you could construct in Prolog.
6

5 Understand tokenization.The internal memory representation of data in Prolog can be quite di�erentfrom the printed representation. The fundamental unit is the term, of whichthere are three types: numbers, atoms, and structures. Numbers are stored in�xed-point or
oating-point binary, the same as in most other programminglanguages. Atoms and structures have representations speci�c to Prolog.Atoms are stored in a symbol table in which each atom occurs only once;atoms in the program are replaced by their addresses in the symbol table.This is called interning or tokenization of the atoms, and it is performedwhenever Prolog reads atoms and recognizes them as such | when loadingthe program, accepting queries from the keyboard, or even accepting inputat run time with the read predicate. Whenever an atom exists, it is in thesymbol table.Because of tokenization, a Prolog data structure can be much shorter than itlooks: repeated occurrences of the same atom take up little additional space.Despite its appearance, the structuref(`What a long atom this seems to be',`What a long atom this seems to be',`What a long atom this seems to be')is very compact | possibly smaller than g(aaaaa,bbbbb,ccccc). The mem-ory representations of these two structures are shown in Figure 1.Further, atoms can be compared more quickly than anything else exceptnumbers. To compare two atoms, even long ones, the computer need onlycompare their addresses. By contrast, comparing lists or structures requiresevery element to be examined individually.Consider for example the following two tests:a \= b 7

aaaaaaaa \= aaaaaaabWithout tokenization, the second test would take longer because it would benecessary to compare eight corresponding characters instead of just one. InProlog, however, the second test is just as fast as the �rst, because all thatit does is verify that two addresses in the symbol table are di�erent. Thestrings aaaaaaaa and aaaaaaab were assigned to distinct addresses once andfor all when they were �rst tokenized.6 Avoid string processing.Character string handling is rarely needed in Prolog except to convert print-able strings into more meaningful structures. The input to a natural languageparser, for instance, should be[the,dog,chased,the,cat]rather than "the dog chased the cat"so that the bene�ts of tokenization can be obtained.Character strings in Prolog are bulky. Whereas abc is a single atom, thestring \abc" is a list of numbers representing ASCII codes, i. e., [97,98,99].Recall that a list, in turn, is a head and a tail held together by the functor`.', so that [97,98,99] is really .(97,.(98,.(99,[]))), represented internallyas shown in Fig. 2. Strings are designed to be easily taken apart; theironly proper use is in situations where access to the individual characters isessential. 8

Arity/Prolog has an alternative type of string, written abc or the like, thatis stored compactly but not interned in the symbol table. This is importantbecause there is usually a limit on the number of symbols in the table; aprogram with lots of textual messages can avoid hitting this limit by using$-strings instead of long atoms.The built-in predicate read tokenizes its input. Many implementations pro-vide predicates that are like read except that they accept input from a list ofcharacters. With such a predicate, it is easy to preprocess a character stringto make it follow Prolog syntax, then convert it to a Prolog term.7 Recognize tail recursion.Because Prolog has no loop structures, the only way to express repetitionis through recursion. Variables that change value from one iteration to thenext must be passed along as arguments, thus:count(N) :-write(N), nl,NewN is N+1,count(NewN).Recursion can be ine�cient because, in general, each procedure call requiresinformation to be saved so that control can return to the calling procedure.Thus, if a clause calls itself 1000 times, there will be 1000 copies of its stackframe in memory.There is one exception. Tail recursion is the special case in which controlneed not return to the calling procedure because there is nothing more forit to do. In this case the called procedure can be entered by a simple jumpwithout creating a stack frame.Most Prologs recognize tail recursion and transform it into iteration so thatrepeated execution does not consume memory. In Prolog, tail recursion existswhen: 9

1. the recursive call is the last subgoal in the clause;2. there are no untried alternative clauses;3. there are no untried alternatives for any subgoal preceding the recursivecall in the same clause.Figure 3 shows a tail recursive predicate and three predicates that are nottail recursive for di�erent reasons.A tail recursive predicate normally contains one or more tests to stop therecursion. These must normally precede the recursive clause, thus:count_to_100(X) :-X > 100./* succeed and do nothing */count_to_100(X) :-X =< 100,write(X), nl,NewX is X+1,count_to_100(NewX).However, the recursive clause can be followed by other clauses if, at the timeof the call, they will have been ruled out by cuts or by indexing (see below).The lack of conventional loop constructs is not a
aw in Prolog. On thecontrary, it makes it easier to prove theorems about how Prolog programsbehave. For years, mathematicians have dealt with repetitive patterns byusing inductive proofs | that is, by substituting recursion for iteration.Prolog does the same thing. After years of using both Prolog and Pascalalmost daily, I �nd the Prolog approach to repetition less error-prone.10

8 Let indexing help.To �nd a clause that matches the query?- f(a,b).the Prolog system does not look at all the clauses in the knowledge base |only the clauses for f. Associated with the functor f is a pointer or hash-ing function that sends the search routine directly to the right place. Thistechnique is known as indexing.Many implementations carry this further by indexing on not only the predi-cate, but also the principal functor of the �rst argument. In such an imple-mentation, the search considers only clauses that match f(a,: : :) and neglectsclauses such as f(b,c).First-argument indexing is a trade-o�. Its intent is to save execution timeand, even more importantly, to save memory by reducing the need to recordbacktrack points. But the indexing process itself complicates the search byrequiring more analysis of the thing being searched for. Indexing on theprincipal functor of the �rst argument represents a reasonable compromise.Indexing has two practical consequences. First, arguments should be orderedso that the �rst argument is the one most likely to be known at search time,and preferably the most diverse. With �rst-argument indexing, the clausesf(a,x).f(b,x).f(c,x).can often be searched in one step, whereas the clausesf(x,a).f(x,b).f(x,c). 11

always require three steps because indexing cannot distinguish them.Second, indexing can make a predicate tail recursive when it otherwise wouldnot be. For example,f(x(A,B)) :- f(A).f(q).is tail recursive even though the recursive call is not in the last clause, be-cause indexing eliminates the last clause from consideration: any argumentthat matches x(A,B) cannot match q. The same is true of list processingpredicates of the formf([Head|Tail],...) :- ...f([],...).because indexing distinguishes non-empty lists from [].9 Use mode declarations.Normally, Prolog assumes that each of the arguments to a predicate may beinstantiated or uninstantiated. This results in compiled code that branchesto several alternative versions of each procedure in order to handle all thecombinations.Most compilers provide a mode statement that allows you to rule out some ofthe alternatives and thereby speed up execution. For instance, the predicatecapital_of(georgia,atlanta).can be used with either argument instantiated, or both, or none, but if writtenas 12

:- mode capital_of(+,-).capital_of(georgia,atlanta).it requires the �rst argument to be instantiated and the second to be unin-stantiated.Add mode declarations cautiously after the code has been debugged. At leastone manual warns ominously that if the mode declarations are violated, \Insome cases, the program will work. In others, your program will produceerroneous results or not work at all."The ideal Prolog compiler would perform data
ow analysis and generate atleast some of its mode declarations automatically.10 Work at the beginning of the list.The only directly accessible element of a list is the �rst one. It pays toperform all manipulations there and avoid, as far as possible, traversing thewhole length of the list.Sometimes this entails building the list backward. After all, there is nothingsacred about the left-to-right order in which lists are normally printed. Forexample, a program that solves a maze might record its steps by adding themat the beginning of a list. The result is a list giving the path, backward.Working at the beginning of the list can really pay o� in e�ciency. A classicexample is a way of reversing a list. The familiar, ine�cient \naive reverse"predicate is the following:reverse([],[]).reverse([H|T],Result) :-reverse(T,ReversedT),append(ReversedT,[H],Result).13

But reversing an N-element list this way takes time proportional to N 2.One factor of N comes from the fact that reverse is called once for each listelement. The other factor of N comes from append(ReversedT,[H],Result)because append has to step through all the elements of ReversedT in orderto get to the end and attach [H]. This takes time proportional to the lengthof ReversedT, which in turn is proportional to N.A faster way to reverse a list is to extract elements one by one from thebeginning of one list and add them at the beginning of another. This requiresa three-argument procedure, where the third argument is used to return the�nal result: fast_reverse(List1,List2) :-fr(List1,[],List2).fr([Head|Tail],SoFar,Result) :-fr(Tail,[Head|SoFar],Result).fr([],SoFar,SoFar).The �rst clause of fr transfers the �rst element of [Head|Tail] to SoFar,then calls itself to do the same thing again. When [Head|Tail] becomesempty, the second clause of fr uni�es SoFar with Result. The process takeslinear time.11 Avoid CONSing.In Prolog, as in Lisp, it is much easier to examine existing structures thanto create new ones. Creating new structures (known in Lisp as CONSing)requires dynamic allocation of memory.If, therefore, the same computation can be done with or without CONSing,the version that avoids CONSing will be faster. Often, CONSing is avoided14

simply by working at the beginning of the list. Sterling and Shapiro illustratethis with two algorithms to test whether one list is a sublist of another.Another way to avoid CONSing is to build structures by progressive instanti-ation rather than by copying. Most Prolog predicates that modify structuresdo so by building, from the original structure, a new one that is di�erent insome way; append, reverse, and similar list manipulations are familiar ex-amples. The alternative is to add information to a structure by instantiatingparts of it that were originally uninstantiated.For example, the list [a,b,c|X] can be turned into [a,b,c,d|Y], withoutCONSing, simply by instantiating X as [d|Y]. Such a list, with an uninstan-tiated tail, is called an open list. The same principle can be used to buildopen trees and open data structures of other shapes.The problem with [a,b,c|X] is that the only way to get to the X is to workdown the list starting at a. Although this does not require CONSing, it doestake time. Processing can go faster if another instance of X is kept outsidethe list where it can be accessed directly. The resulting structure is called adi�erence list and has the formf([a,b,c|X],X)where f is any two-argument functor; the in�x operators / and - are oftenused for the purpose, and the above list is written [a,b,c|X]-X or the like.Di�erence lists can be concatenated very quickly | once | by instantiatingthe tail of the �rst list to the whole of the second list. The �rst list then be-comes the result of the concatenation; there is no third, concatenated, list tobe produced. This is the Prolog equivalent of the LISP function RPLACD. Itis somewhat less destructive because, like all Prolog instantiations, di�erencelist concatenations are undone upon backtracking.15

12 ConclusionAll these techniques for improving e�ciency share a common thread { aware-ness of procedural aspects of a declarative language. This does not mean theyare all low-level, inelegant \tricks" that purists should ignore.Some of the techniques are low-level, such as indexing and tail recursionoptimization. Prolog would still be Prolog if these features were eliminatedor changed radically. The decision to index on the principal functor of the�rst argument is certainly arbitrary, and if indexing went away tomorrow,some programs would lose e�ciency but none would lose correctness.Other techniques, however, are purely algorithmic. Even when stated declar-atively, algorithms consist of steps, and one algorithm can have more stepsthan another. It will always be faster to test the set-equivalence of lists bysorting than by permuting, simply because there are too many permutations,and no conceivable implementation can change this fact.Between the two extremes are data-structure-dependent techniques such asworking at the beginning of a list. The �rst element of every list is the mostaccessible, not because of some quirk of implementation, but because theunderlying semantics of Prolog says that [a,b,c] is really .(a,.(b,.(c,[]))).An optimizing implementation might provide faster access to list elementsthat are theoretically hard to get to, just as an optimizing Fortran compilercan move certain statements outside of loops, but one should not rely on theimplementor to make the language more e�cient than its semantics calls for.AcknowledgementI want to thank Don Potter for helpful suggestions. All opinions and errorsin this paper are of course my own.References[1] D.H.D. Warren and L.M. Pereira. \Prolog | The Language and itsImplementation Compared with Lisp," ACM SIGPLAN Notices, Vol.16

12, No. 8, August 1977, pp. 109{115.[2] Quintus Prolog User's Guide, Quintus Computer Systems, MountainView, Calif., version 11 for release 2.0, 1987, p. 98.[3] Using the Arity/Prolog Interpreter and Compiler, Arity Corporation,Concord, Mass., 1987, p. 104.[4] ALS Prolog 1.2, Applied Logic Systems, Syracuse, N.Y., 1988.[5] R.A.O'keefe, \On String Concatenation," Prolog Digest, Vol. 5, No. 100.[6] Arity/Prolog 5.0, Arity Corporation, Concord, Mass., 1987.[7] Building Arity/Prolog Applications, Arity Corporation, Concord, Mass.,1986, p. 25.[8] C.S.Mellish, \Some Global Optimizations for a Prolog Compiler," Jour-nal of Logic Programming, Vol. 2, 1985, pp. 43{66.[9] S.K.Debray and D.S. Warren, \Automatic Mode Inference for PrologPrograms," Proceedings, 1986 Symposium on Logic Programming, IEEEComputer Society, pp. 78{88.[10] L.Sterling and E.Shapiro, The Art of Prolog: Advanced ProgrammingTechniques, M.I.T. Press, Cambridge, Mass., 1986, p. 194.
17

Figure 1.Memory representations of two structures.f(`What a long atom this is',`What a long atom this is',`What a long atom this is')
f

What a long ...

Symbol Table

g(aaaaa,bbbbb,ccccc).
Symbol table

g

aaaaa

bbbbb

ccccc

ddddd

18

Figure 2.Internal representation of the list [97,98,99] (equivalent to the string"abc").
Symbol Table

97 98 99
[]

.

19

Figure 3.Recursion does not consume memory if the recursive call is the verylast step of the calling procedure.% This predicate is tail recursive% and can run forever.test1 :- write(hello), nl, test1.% This predicate is not tail recursive% because the recursive call is not last.test2 :- test2, write(hello), nl.% This predicate is not tail recursive% because it has an untried alternative.test3 :- write(hello), nl, test3.test3 :- write(goodbye).% This predicate is not tail recursive% because a subgoal has an untried alternative.test4 :- g, write(hello), nl, test4.g :- write(starting).g :- write(beginning).
20

