
Logic Programming
Manipulating Programs

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Contents

Introduction

I Programs as data.
I Manipulating Prolog programs with other Prolog programs.
I Meta-Programming

clause Predicate

clause(X,Y)

I Built-in binary predicate, very important if one wishes to
construct programs that examine or execute other
programs.

I Satisfying clause(X,Y) causes X and Y to be matched
with the head and body of an existing clause in the
database.

I X must be instantiated so that the main predicate of the
clause is known.

clause Predicate

Satisfying clause(X,Y)

I If there are no clauses that match X, the goal fails.
I If there is more than one clause that matches, Prolog

returns the first one. The other matches will be chosen,
one at a time, when Prolog backtracks.

clause Predicate. Examples

append([],X,X).
append([A|B],C,[A|D]):-append(B,C,D).

?- clause(append(L1,L2,L3),Y).

L1 = []
L2 = L3
Y = true ;

L1 = [_G463|_G464]
L3 = [_G463|_G467]
Y = append(_G464, L2, _G467) ;

No

A Version of listing Predicate

list1(X)

I Satisfying the goal list1(X) will print out the clauses in
the database whose head matches X.

I The definition of list1(X) will involve clause with X as
the first argument.

I Therefore, X has to be sufficiently instantiated.

Definition of list1

list1(X):-
clause(X,Y),
output_clause(X,Y), write(’.’),nl,fail.

list1(X).

output_clause(X,true):-!,write(X).
output_clause(X,Y):-write((X:-Y)).

How Does list1 Work?

I The first clause causes a search for a clause whose head
matches X.

I If one found, it is printed and a failure is generated.
I Backtracking will reach the clause goal and find another

clause, if there is one, and so on.
I When there is no more clause to be found, the clause

goal will fail.
I At this point, the second clause for list1 will be chosen,

so the goal will succeed.
I As a “side effect", all the appropriate clauses will have

been printed out.

How Does output_clause Work?

I Specifies how the clauses will be printed.
I It looks for a special case of the body true. In this case it

just prints the head.
I Otherwise, it writes out the head and the body, constructed

with the functor :-.
I The “cut” in the first rule for output_clause says that the

first rule is the only valid possibility if the body is true.
I The “cut” is essential because the example relies on

backtracking.

Writing Prolog Interpreter in Prolog

Idea:
I Define what it is to run a Prolog program by something

which is itself a Prolog program.

The interpret Predicate

Idea:
I interpret(X) succeeds as a goal exactly when X

succeeds as a goal.
I interpret is similar to built-in predicate call, but is

more restricted: It does not deal with cuts or built-in
predicates

The interpret Predicate

interpret(true):-!.
interpret((G1,G2)):-!,

interpret(G1),
interpret(G2).

interpret(Goal):-
clause(Goal,MoreGoals),
interpret(MoreGoals).

The interpret Predicate

I The first clause of interpret deals with the special case
when the goal is true.

I The second clause deals with the case when a goal is a
conjunction.

I The third clause covers a simple goal: The procedure is
the following:

1. Find a clause whose head matches the goal
2. interpret the goals in the body of that clause.

I Limitations: The program will not cope with programs using
built-in predicates, because such predicates do not have
clauses in the usual sense.

The consult Predicate

I consult is provided as a built-in predicate in most
systems.

I Interesting to see how it can be defined in Prolog.
I A simplified definition.

Program for consult

consult(File):-
seeing(Input),
see(File),
repeat,
read(Term),
process(Term),
seen,
see(Input),
!.

Program for consult, Cont.

process(Term):-end_of_file_mark(Term),!.
process(?- Q):-!,call(Q),!,fail.
process(Clause):-assertz(Clause),fail.

Program for consult. Explanations.

I seeing(X) succeeds iff the name of the current stream
matches X.

I see(X) opens the file X, if it is not already open, and
defines the current input stream to originate from X. Error if
X is not instantiated, or if X names a file that does not exist.

I seen closes the current input stream, and defines the
current input stream to be the keyboard.

Program for consult. Explanations.

I repeat provides an extra way to generate multiple
solutions through backtracking.

I Can be defined as:
repeat.
repeat:-repeat.

I read reads the next term from the current input stream
and matches it with X. The term must be followed by a dot
“.”, which does not become a part of the term, and at least
one non-printing character (e.g. a character that causes a
new line to appear)

Program for consult. Explanations.

I end_of_file_mark should be defined by the user.
I It is supposed to succeed when its argument is instantiated

to the term used to represent the end of file
I This term is implementation dependent.

Program for consult. Explanations.

I process should cause an appropriate action to be taken
for each term from the input file.

I A process goal only succeeds when when its argument is
the end of file mark.

I Otherwise, a failure occurs after the appropriate action,
and backtracking goes back to the repeat goal.

I If a term read for the file represents a question (second
clause for process), an attempt is made to satisfy the
appropriate goal immediately using the call predicate.

	Listing
	Writing Prolog Interpreter in Prolog
	The consult Predicate

