
Logic Programming
Using Grammar Rules

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at



Contents

The Parsing Problem

Representing the Parsing Problem in Prolog

The Grammar Rule Notation

Adding Extra Arguments

Adding Extra Tests



Grammar of a Language

Definition (Grammar of a Language)
A set of rules for specifying what sequences of words are
acceptable as sentences of the language.

Grammar specifies:
I How the words must group together to form phrases.
I What orderings of those phrases are allowed.



Parsing Problem

Given: A grammar for a language and a sequence of
words.

Problem: Is the sequence an acceptable sentence of the
language?



Simple Grammar Rules for English

Structure Rules:

sentence -> noun_phrase, verb_phrase.

noun_phrase -> determiner, noun.

verb_phrase -> verb, noun_phrase.

verb_phrase -> verb.



Simple Grammar Rules for English (Ctd.)

Valid Terms:

determiner -> [the].

noun -> [man].

noun -> [apple].

verb -> [eats].

verb -> [sings].



Reading Grammar Rules

X->Y: "X can take the form Y".
X,Y: "X followed by Y".

Example
sentence -> noun_phrase, verb_phrase:

sentence can take a form: noun_phrase followed by
verb_phrase.



Alternatives

Two rules for verb_phrase:

1. verb_phrase -> verb, noun_phrase.

2. verb_phrase -> verb.

Two possible forms:
1. verb_phrase can contain a noun_phrase: "the man

eats the apple", or
2. it need not: "the man sings"



Valid Terms

Specify phrases made up in terms of actual words (not in terms
of smaller phrases):

I determiner -> [the]:
A determiner can take the form: the word the.



Parsing

sentence -> noun_phrase, verb_phrase

sentence

noun_phrase

The man

verb_phrase

eats the apple



Parsing

noun_phrase -> determiner, noun

noun_phrase

determiner

the

noun

man



How To

Problem: How to test whether a sequence is an acceptable
sentence?

Solution: Apply the first rule to ask:

Does the sequence decompose into two phrases:
acceptable noun_phrase and
acceptable verb_phrase?



How To

Problem: How to test whether the first phrase is an
acceptable noun_phrase?

Solution: Apply the second rule to ask:

Does it decompose into a
determiner followed by a noun?

And so on.



Parse Tree

sentence

noun_phrase

determiner

the

noun

man

verb_phrase

verb

eats

noun_phrase

determiner

the

noun

apple



Parsing Problem

Given: A grammar and a sentence.
Construct: A parse tree for the sentence.



Prolog Parse

Problem: Parse a sequence of words.
Output: True, if this sequence is a valid sentence.

False, otherwise.

Example (Representation)
Words as PROLOG atoms and sequences of words as lists:

[the,man,eats,the,apple]



Sentence

Introducing predicates:

sentence(X) : X is a sequence of words
forming a grammatical sentence.

noun_phrase(X) : X is a noun phrase.
verb_phrase(X) : X is a verb phrase.



Program

sentence(X) :-
append(Y,Z,X),
noun_phrase(Y),
verb_phrase(Z).

verb_phrase(X) :-
append(Y,Z,X),
verb(Y),
noun_phrase(Z).

verb_phrase(X) :-
verb(X).

noun_phrase(X) :-
append(Y,Z,X),
determiner(Y),
noun(Z).

determiner([the]).

noun([apple]).
noun([man]).

verb([eats]).
verb([sings]).



Inefficient

I A lot of extra work.
I Unnecessary Searching.
I Generate and Test:

I Generate a sequence.
I Test to see if it matches.

I Simplest Formulation of the search but inefficient



Inefficiency

The program accepts the sentence "the man eats the apple":

?-sentence([the,man,eats,the,apple]).

yes

The goal
?-append(Y,Z,[the,man,eats,the,apple])

on backtracking can generate all possible pairs:

Y=[], Z=[the,man,eats,the,apple]
Y=[the], Z=[man,eats,the,apple]
Y=[the,man], Z=[eats,the,apple]
Y=[the,man,eats], Z=[the,apple]
Y=[the,man,eats,the], Z=[apple]
Y=[the,man,eats,the,apple], Z=[]



Redefinition

noun_phrase(X,Y) : there is a noun phrase
at the beginning
of the sequence X
and the part that is left
after the noun phrase
is Y.

The goal

?-noun_phrase([the,man,saw,the,cat],
[saw,the,cat]).

should succeed.

noun_phrase(X,Y):- determiner(X,Z),noun(Z,Y).



Improved Program

sentence(S0,S) :-
noun_phrase(S0,S1),
verb_phrase(S1,S).

verb_phrase(S0,S):-
verb(S0,S).

verb_phrase(S0,S):-
verb(S0,S1),
noun_phrase(S1,S).

noun_phrase(S0,S):-
determiner(S0,S1),
noun(S1,S).

determiner([the|S],S).

noun([man|S],S).
noun([apple|S],S).

verb([eats|S],S).
verb([sings|S],S).



Goal

sentence(S0,S) : There is a sentence
at the beginning of S0
and
what remains from the sentence in S0
is S.

We want whole S0 to be a sentence, i.e., S should be empty.

?-sentence([the,man,eats,the,apple]),[]).

Do you remember difference lists?



Pros and Cons

Advantage: More efficient.
Disadvantage: More cumbersome.
Improvement idea: Keep the easy grammar rule notation for

the user,
Automatically translate into the PROLOG code for
computation.



Defining Grammars

PROLOG provides an automatic translation facility for grammars.

Principles of translation:
I Every name of a kind of phrase must be translated into a

binary predicate.
I First argument of the predicate—the sequence provided.
I Second argument—the sequence left behind.
I Grammar rules mentioning phrases coming one after

another must be translated so that
I the phrase left behind by one phrase forms the input of the

next, and
I the amount of words consumed by whole phrase is the

same as the total consumed by subphrases.



Defining Grammars

The rule sentence -> noun_phrase, verb_phrase.
translates to:

sentence(S0,S):-
noun_phrase(S0,S1),
verb_phrase(S1,S).

The rule determiner -> [the] translates to

determiner([the|S],S).



Defining Grammars

Now, the user can input the grammar rules only:

sentence -> noun_phrase, verb_phrase.
verb_phrase -> verb.
verb_phrase -> verb, noun_phrase.
noun_phrase -> determiner, noun.
determiner -> [the].
noun -> [man].
noun -> [apple].
verb -> [eats].
verb -> [sings].



It will be automatically translated into:

sentence(S0,S) :-
noun_phrase(S0,S1),
verb_phrase(S1,S).

verb_phrase(S0,S):-
verb(S0,S).

verb_phrase(S0,S):-
verb(S0,S1),
noun_phrase(S1,S).

noun_phrase(S0,S):-
determiner(S0,S1),
noun(S1,S).

determiner([the|S],S).

noun([man|S],S).
noun([apple|S],S).

verb([eats|S],S).
verb([sings|S],S).



Goals

?-sentence([the,man,eats,the,apple],[]).
yes

?-sentence([the,man,eats,the,apple],X).
X=[]

SWI-Prolog provides an alternative (for the first goal only):

?-phrase(sentence,[the,man,eats,the,apple]).
yes



Phrase Predicate

Definition of phrase is easy
phrase(Predicate,Argument):-

Goal=..[Predicate,Argument,[]],
call(Goal).

=.. (read “equiv") – built-in predicate



=..

?- p(a,b,c)=..X.
X = [p, a, b, c]

?- X=..p(a,b,c).
ERROR: =../2: Type error: ‘list’ expected,
found ‘p(a, b,c)’

?- X=..[p,a,b,c].
X=p(a,b,c).

?- X=..[].
ERROR: =../2: Domain error: ‘not_empty_list’
expected, found ‘[]’

?- X=..[1,a].
ERROR: =../2: Type error: ‘atom’ expected,
found ‘1’



Is Not it Enough?

No, we want more.

Distinguish singular and plural sentences.

Ungrammatical:

I The boys eats the apple
I The boy eat the apple



Straightforward Way

Add more grammar rules:

sentence -> singular_sentence.
sentence -> plural_sentence.
noun_phrase -> singular_noun_phrase.
noun_phrase -> plural_noun_phrase.
singular_sentence -> singular_noun_phrase,

singular_verb_phrase.
singular_noun_phrase -> singular_determiner,

singular_noun.



Straightforward Way

singular_verb_phrase -> singular_verb,
noun_phrase.

singular_verb_phrase -> singular_verb.
singular_determiner -> [the].
singular_noun -> [man].
singular_noun -> [apple].
singular_verb -> [eats].
singular_verb -> [sings].

And similar for plural phrases.



Disadvantages

I Not elegant.
I Obscures the fact that singular and plural sentences have

a lot of structure in common.



Better solution

I Associate an extra argument to phrase types according to
whether it is singular or plural:

sentence(singular)
sentence(plural)



Grammar Rules with Extra Arguments

sentence -> sentence(X).
sentence(X) -> noun_phrase(X),

verb_phrase(X).
noun_phrase(X) -> determiner(X),

noun(X).
verb_phrase(X) -> verb(X),

noun_phrase(Y).
verb_phrase(X) -> verb(X).



Grammar Rules with Extra Arguments. Cont.

determiner(_) -> [the].
noun(singular) -> [man].
noun(singular) -> [apple].
noun(plural) -> [men].
noun(plural) -> [apples].
verb(singular) -> [eats].
verb(singular) -> [sings].
verb(plural) -> [eat].
verb(plural) -> [sing].



Parse Tree

The man eats the apple

should generate

sentence(
noun_phrase(

determiner(the),
noun(man)),

verb_phrase(
verb(eats),
noun_phrase(

determiner(the),
noun(apple)),

)
)



Building Parse Trees

I We might want grammar rules to make a parse tree as well.
I Rules need one more argument.
I The argument should say how the parse tree for the whole

phrase can be constructed from the parse trees of its
sub-phrases.

Example:
sentence(X,sentence(NP,VP)) ->

noun_phrase(X,NP),verb_phrase(X,VP).



Translation

sentence(X,sentence(NP,VP)) ->
noun_phrase(X,NP),
verb_phrase(X,VP).

translates to

sentence(X,sentence(NP,VP),S0,S) :-
noun_phrase(X,NP,S0,S1),
verb_phrase(X,VP,S1,S).



Grammar Rules for Parse Trees

Number agreement arguments are left out for simplicity.

sentence(sentence(NP,VP)) ->
noun_phrase(NP),
verb_phrase(VP).

verb_phrase(verb_phrase(V)) ->
verb(V).

verb_phrase(verb_phrase(VP,NP)) ->
verb(VP),
noun_phrase(NP).

noun_phrase(noun_phrase(DT,N)) ->
determiner(DT),
noun(N).



Grammar Rules for Parse Trees. Cont.

determiner(determiner(the)) -> [the].
noun(noun(man)) -> [man].
noun(noun(apple)) -> [apple].
verb(verb(eats)) -> [eats].
verb(verb(sings)) -> [sings].



Translation into Prolog Clauses

I Translation of grammar rules with extra arguments—a
simple extension of translation of rules without arguments.

I Create a predicate with two more arguments than are
mentioned in the grammar rules.

I By convention, the extra arguments are as the last
arguments of the predicate.

sentence(X) -> noun_phrase(X), verb_phrase(X).

translates to

sentence(X,S0,S) :-
noun_phrase(X,S0,S1), verb_phrase(X,S1,S).



Adding Extra Tests

I So far everything in the grammar rules were used in
processing the input sequence.

I Every goal in the translated Prolog clauses has been
involved with consuming some amount of input.

I Sometimes we may want to specify Prolog clauses that are
not of this type.

I Grammar rule formalism allows this.
I Convention: Any goals enclosed in curly brackets {} are left

unchanged by the translator.



Overhead in Introducing New Word

I To add a new word banana, add at least one extra rule:
noun(singular, noun(banana)) -> [banana].

I Translated into Prolog:
noun(singular, noun(banana), [banana|S],S).

I Too much information to specify for one noun.



Mixing Grammar with Prolog

Put common information about all words in one place, and
information about particular words in somewhere else:

noun(S, noun(N)) -> [N],{is_noun(N,S)}.
is_noun(banana,singular).
is_noun(banana,plural).
is_noun(man,singular).



Mixing Grammar with Prolog

noun(S, noun(N)) -> [N],{is_noun(N,S)}.

I {is_noun(N,S)} is a test (condition).
I N must be in the is_noun collection with some plurality S.
I Curly brackets indicate that it expresses a relation that has

nothing to do with the input sequence.
I Translation does not affect expressions in the curly

brackets:
noun(S, noun(N),[N|Seq],Seq):-is_noun(N,S).



Mixing Grammar with Prolog

I Another inconvenience:

is_noun(banana,singular).
is_noun(banana,plural).

I Two clauses for each noun.

I Can be avoided in most of the cases
by adding s for plural at the and of singular.



Mixing Grammar with Prolog

I Amended rule:
noun(plural, noun(N)) ->

[N],
{atom_chars(N,Plname),
append(Singname,[s],Plname),
atom_chars(RootN,Singname),
is_noun(RootN,singular))} .



Further Extension

I So far the rules defined things in terms how the input
sequence is consumed.

I We might like to define things that insert items into the
input sequence.

I Example: Analyze
“Eat your supper"

as if there were an extra word “you" inserted:
“You eat your supper"



Rule for the Extension

sentence –> imperative,
noun_phrase,
verb_phrase.

imperative, [you] –> [].
imperative –> [].

The first rule of imperative translate to:

imperative(L,[you|L]).



Meaning of the Extension

I If
the left hand side of a grammar rule consists of a part of
the input sequence separated from a list of words by
comma

I Then
in the parsing, the words are inserted into the input
sequence after the goals on the right-hand side have had
their chances to consume words from it.


	The Parsing Problem
	Representing the Parsing Problem in Prolog
	The Grammar Rule Notation
	Adding Extra Arguments
	Adding Extra Tests

