
Theorem 2.4.18. If the elements of F = (f1, . . . , fs) are a Gröbner basis,

then S is a basis for Syz(F ), where S is defined as follows.

For 1 ≤ i ≤ s let ei = (0, . . . , 0, 1, 0, . . . , 0) be the i–th unit vector and

for 1 ≤ i < j ≤ s let

t = lcm(lpp(fi), lpp(fj)),

pij =
1

lc(fi)
·

t

lpp(fi)
, qij =

1

lc(fj)
·

t

lpp(fj)
,

and k1
ij , . . . , k

s
ij be the polynomials extracted from a reduction of spol(fi, fj)

to 0, such that

spol(fi, fj) = pijfi − qijfj =
s∑

l=1

kl
ijfl.

Then

S = {pij · ei − qij · ej − (k1
ij , . . . , k

s
ij)

︸ ︷︷ ︸

Sij

| 1 ≤ i < j ≤ s}.

Proof: Obviously every element of S is a syzygy of F , since every S–
polynomial reduces to 0.

On the other hand let z = (z1, . . . , zs) 6= (0, . . . , 0) be an arbitrary
non-trivial syzygy of F . Let p be the hightest power product occurring in

f1z1 + . . . + fszs = 0, (∗)

i.e.
p = max

<
{t ∈ [X] | coeff(fi · zi, t) 6= 0 for some i}

and let i1 < . . . < im be those indices such that lpp(fij
· zij

) = p. We
have m ≥ 2. Suppose that m > 2. By subtracting a suitable multiple of
Sim−1,im

from z, we can reduce the number of positions in z that contribute
to the highest power product p in (∗). Iterating this process m − 2 times,
we finally reach a situation, where only two positions i1, i2 in the syzygy
contribute to the power product p. Now the highest power product in
(∗) can be decreased by subtracting a suitable multiple of Si1,i2 . Since <

is Noetherian, this process terminates, leading to an expression of z as a
linear combination of elements of S. ⊔⊓



Theorem 2.4.19. Let F = (f1, . . . , fs)
T be a vector of polynomials in

K[X] and let the elements of G = (g1, . . . , gm)T be a Gröbner basis for

〈f1, . . . , fs〉. We view F and G as column vectors. Let the r rows of the

matrix R be a basis for Syz(G) and let the matrices A,B be such that

G = A ·F and F = B ·G. Then the rows of Q are a basis for Syz(F ), where

Q =





Is − B · A
...............

R · A



 .

Proof: Let b1, . . . , bs+r be polynomials, b = (b1, . . . , bs+r).

(b · Q) · F =

((b1, . . . , bs) · (Is − B · A) + (bs+1, . . . , bs+r) · R · A) · F =

(b1, . . . , bs) · (F − B · A · F
︸ ︷︷ ︸

=F

) + (bs+1, . . . , bs+r) · R · A · F
︸ ︷︷ ︸

=G

= 0
.

So every linear combination of the rows of Q is a syzygy of F .
On the other hand, let H = (h1, . . . , hs) be a syzygy of F . Then H ·B

is a syzygy of G. So for some H ′ we can write H ·B = H ′ ·R, and therefore
H · B · A = H ′ · R · A. Thus,

H = H · (Is − B · A) + H ′ · R · A = (H,H ′) · Q,

i.e. H is a linear combination of the rows of Q. ⊔⊓


