Theorem 2.4.18. If the elements of $F=\left(f_{1}, \ldots, f_{s}\right)$ are a Gröbner basis, then S is a basis for $\operatorname{Syz}(F)$, where S is defined as follows.

For $1 \leq i \leq s$ let $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ be the i-th unit vector and for $1 \leq i<j \leq s$ let

$$
\begin{aligned}
& t=\operatorname{lcm}\left(\operatorname{lpp}\left(f_{i}\right), \operatorname{lpp}\left(f_{j}\right)\right) \\
& p_{i j}=\frac{1}{\operatorname{lc}\left(f_{i}\right)} \cdot \frac{t}{\operatorname{lpp}\left(f_{i}\right)}, \quad q_{i j}=\frac{1}{\operatorname{lc}\left(f_{j}\right)} \cdot \frac{t}{\operatorname{lpp}\left(f_{j}\right)},
\end{aligned}
$$

and $k_{i j}^{1}, \ldots, k_{i j}^{s}$ be the polynomials extracted from a reduction of $\operatorname{spol}\left(f_{i}, f_{j}\right)$ to 0 , such that

$$
\operatorname{spol}\left(f_{i}, f_{j}\right)=p_{i j} f_{i}-q_{i j} f_{j}=\sum_{l=1}^{s} k_{i j}^{l} f_{l} .
$$

Then

$$
S=\{\underbrace{p_{i j} \cdot e_{i}-q_{i j} \cdot e_{j}-\left(k_{i j}^{1}, \ldots, k_{i j}^{s}\right)}_{S_{i j}} \mid 1 \leq i<j \leq s\} .
$$

Proof: Obviously every element of S is a syzygy of F, since every Spolynomial reduces to 0 .

On the other hand let $z=\left(z_{1}, \ldots, z_{s}\right) \neq(0, \ldots, 0)$ be an arbitrary non-trivial syzygy of F. Let p be the hightest power product occurring in

$$
\begin{equation*}
f_{1} z_{1}+\ldots+f_{s} z_{s}=0 \tag{*}
\end{equation*}
$$

i.e.

$$
p=\max _{<}\left\{t \in[X] \mid \operatorname{coeff}\left(f_{i} \cdot z_{i}, t\right) \neq 0 \text { for some } i\right\}
$$

and let $i_{1}<\ldots<i_{m}$ be those indices such that $\operatorname{lpp}\left(f_{i_{j}} \cdot z_{i_{j}}\right)=p$. We have $m \geq 2$. Suppose that $m>2$. By subtracting a suitable multiple of $S_{i_{m-1}, i_{m}}$ from z, we can reduce the number of positions in z that contribute to the highest power product p in (*). Iterating this process $m-2$ times, we finally reach a situation, where only two positions i_{1}, i_{2} in the syzygy contribute to the power product p. Now the highest power product in $(*)$ can be decreased by subtracting a suitable multiple of $S_{i_{1}, i_{2}}$. Since $<$ is Noetherian, this process terminates, leading to an expression of z as a linear combination of elements of S.

Theorem 2.4.19. Let $F=\left(f_{1}, \ldots, f_{s}\right)^{T}$ be a vector of polynomials in $K[X]$ and let the elements of $G=\left(g_{1}, \ldots, g_{m}\right)^{T}$ be a Gröbner basis for $\left\langle f_{1}, \ldots, f_{s}\right\rangle$. We view F and G as column vectors. Let the r rows of the matrix R be a basis for $\operatorname{Syz}(G)$ and let the matrices A, B be such that $G=A \cdot F$ and $F=B \cdot G$. Then the rows of Q are a basis for $\operatorname{Syz}(F)$, where

$$
Q=\left(\begin{array}{c}
I_{s}-B \cdot A \\
\cdots \ldots \ldots \ldots \ldots \\
R \cdot A
\end{array}\right)
$$

Proof: Let b_{1}, \ldots, b_{s+r} be polynomials, $b=\left(b_{1}, \ldots, b_{s+r}\right)$.

$$
\begin{aligned}
& (b \cdot Q) \cdot F= \\
& \left(\left(b_{1}, \ldots, b_{s}\right) \cdot\left(I_{s}-B \cdot A\right)+\left(b_{s+1}, \ldots, b_{s+r}\right) \cdot R \cdot A\right) \cdot F= \\
& \left(b_{1}, \ldots, b_{s}\right) \cdot(F-\underbrace{B \cdot A \cdot F}_{=F})+\left(b_{s+1}, \ldots, b_{s+r}\right) \cdot R \cdot \underbrace{A \cdot F}_{=G}=0
\end{aligned} .
$$

So every linear combination of the rows of Q is a syzygy of F.
On the other hand, let $H=\left(h_{1}, \ldots, h_{s}\right)$ be a syzygy of F. Then $H \cdot B$ is a syzygy of G. So for some H^{\prime} we can write $H \cdot B=H^{\prime} \cdot R$, and therefore $H \cdot B \cdot A=H^{\prime} \cdot R \cdot A$. Thus,

$$
H=H \cdot\left(I_{s}-B \cdot A\right)+H^{\prime} \cdot R \cdot A=\left(H, H^{\prime}\right) \cdot Q,
$$

i.e. H is a linear combination of the rows of Q.

