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4. Resultants

Theorem 4.1. (B.L.van der Waerden, “Algebra, vol.I”, p.102)
Let a(x), b(x) be two non-constant polynomials in K[x], K a field. Then
a and b have a non-constant common factor (i.e. a common root over the
algebraic closure of K) if and only if there are polynomials p(x), q(x) ∈ K[x],
not both equal to 0, with deg(p) < deg(b),deg(q) < deg(a), such that

p(x)a(x) + q(x)b(x) = 0 . (∗)

Proof: If a and b have the non-constant common factor c, then obviously
we can write

(b/c) · a − (a/c) · b = 0 .

On the other hand, assume (∗). So we have

p(x)a(x) = −q(x)b(x) . (∗∗)

We factor the left and right hand sides of (∗∗) into irreducible factors. All
the irreducible factors of a(x) must divide the right hand side at least as
often as they divide a(x). Yet they cannot divide q(x) as often as they do
a(x) because of the degree restriction. Hence at least one irreducible factor
of a(x) occurs also in b(x). ⊔⊓
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How can we decide the existence of such polynomials p and q as in the
previous theorem?

Let m = deg(a), n = deg(b) and write

a(x) =
m

∑

i=0

aix
i, b(x) =

n
∑

i=0

bix
i .

Ansatz:

p(x) =

n−1
∑

i=0

pix
i, q(x) =

m−1
∑

i=0

qix
i .

Then

p · a + q · b = 0

⇐⇒
coeff(p · a, xi) + coeff(q · b, xi) = 0 ∀i

⇐⇒
pn−1am + qm−1bn = 0

...
p0a1 + p1a0 + q0b1 + q1b0 = 0

p1a0 + q0b0 = 0

⇐⇒

(pn−1, . . . , p0, qm−1, . . . , q0) ·



















am · · · a0

. . .
. . .

am · · · a0

bn · · · b0

. . .
. . .

bn · · · b0



















= (0, . . . , 0)

This matrix we will call the determinant of a and b.
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Definition 4.2. Let

a(x) =
m

∑

i=0

aix
i, b(x) =

n
∑

i=0

bix
i

be non-constant polynomials in I[x] (I an integral domain) of degree m and
n, respectively.
Let Sylx(a, b) be the Sylvester matrix of a and b, i.e.

Sylx(a, b) =






























am am−1 · · · · · · · · · a1 a0 0 · · · · · · · · · 0
0 am am−1 · · · · · · · · · a1 a0 0 · · · · · · 0

...
0 · · · · · · · · · 0 am am−1 · · · · · · · · · a1 a0

− − − − − − − − − − − −
bn bn−1 · · · · · · · · · b1 b0 0 · · · · · · · · · 0
0 bn bn−1 · · · · · · · · · b1 b0 0 · · · · · · 0

...
0 · · · · · · · · · 0 bn bn−1 · · · · · · · · · b1 b0































.

The lines of Sylx(a, b) consist of the coefficients of the polynomials
xn−1a(x), . . . , xa(x), a(x) and xm−1b(x), . . . , xb(x), b(x), i.e. there are n
lines of coefficients of a and m lines of coefficients of b. The resultant of a
and b is the determinant of Sylx(a, b); i.e.

resx(a, b) := det(Sylx(a, b).
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The resultant resx(f, g) of two univariate polynomials f(x), g(x) over
an integral domain I is the determinant of the Sylvester matrix of f and g,
consisting of shifted lines of coefficients of f and g. resx(f, g) is a constant
in I. For m = deg(f), n = deg(g), we have resx(f, g) = (−1)mnresx(g, f),
i.e. the resultant is symmetric up to sign. If a1, . . . , am are the roots of f ,
and b1, . . . , bn are the roots of g in their common splitting field, then

resx(f, g) = lc(f)nlc(g)m
m
∏

i=1

n
∏

j=1

(ai − bj).

The resultant has the important property that, for non–zero polynomials
f and g, resx(f, g) = 0 if and only if f and g have a common root, and
in fact, f and g have a non-constant common divisor in K[x], where K
is the quotient field of I. If f and g have positive degrees, then there
exist polynomials a(x), b(x) over I such that af + bg = resx(f, g). The
discriminant of f(x) is

discrx(f) = (−1)m(m−1)/2lc(f)2(m−1)
∏

i 6=j

(ai − aj).

We have the relation resx(f, f ′) = (−1)m(m−1)/2lc(f)discrx(f), where f ′ is
the derivative of f .

Also if f(x), g(x) are polynomials over a field K, then

resx(f, g) = p · f + q · g

for some p(x), q(x) ∈ K[x].
(compare Cox,Little,O’Shea, “Ideals, Varieties, and Algorithms”, p.152)
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Lemma 4.3. (Lemma 4.3.1 in Winkler, “Computer Algebra”)
Let I, J be integral domains, φ a homomorphism from I into J . The
homomorphism from I[x] into J [x] induced by φ will also be denoted φ,
i.e. φ(

∑m
i=0 cix

i) =
∑m

i=0 φ(ci)x
i. Let a(x), b(x) be polynomials in I[x].

If deg(φ(a)) = deg(a) and deg(φ(b)) = deg(b) − k, then φ(resx(a, b)) =
φ(lc(a))kresx(φ(a), φ(b)).

Lemma 4.4. (Lemma 4.3.2 in Winkler, “Computer Algebra”)
Let a(x1, . . . , xr) =

∑m
i=0 ai(x1, . . . , xr−1)x

i
r,

b(x1, . . . , xr) =
∑n

i=0 bi(x1, . . . , xr−1)x
i
r be polynomials in Z[x1, . . . , xr].

Let d = max0≤i≤m norm(ai), e = max0≤i≤n norm(bi), α an integer coef-
ficient in resxr

(a, b). Then | α |≤ (m + n)!dnem.

Are a(x1, . . . , xr), b(x1, . . . , xr) ∈ Z[x1, . . . , xr], then the resultant of
a and b w.r.t. the variable xr can be computed by the following modular
algorithm.

The subalgorithm RES MODp computes multivariate resultants over
Zp by evaluation homomorphisms.
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algorithm RES MOD(in: a, b; out: c);
[a, b ∈ Z[x1, . . . , xr], r ≥ 1, a and b have positive degree in xr;
c = resxr

(a, b).]
(1) m := degxr

(a); n := degxr

(b);
d := max0≤i≤m norm(ai); e := max0≤i≤n norm(bi);
P := 1; c := 0; B := 2(m + n)!dnem;

(2) while P ≤ B do

{p := a new prime such that degxr

(a) = degxr

(a(p)) and
degxr

(b) = degxr

(b(p));
c(p) := RES MODp(a(p), b(p));
c := CRA 2(c, c(p), P, p);
[for P = 1 the output is simply c(p),
otherwise CRA 2 is actually applied to
the coefficients of c and c(p)]
P := P · p };

return ⊔⊓

algorithm RES MODp(in: a, b; out: c);
[a, b ∈ Zp[x1, . . . , xr], r ≥ 1, a and b have positive degree in xr;
c = resxr

(a, b).]
(0) if r = 1 then { c := last element of PRS SR(a, b); return };
(1) mr := degxr

(a); nr := degxr

(b);
mr−1 := degxr−1

(a); nr−1 := degxr−1
(b);

B := mrnr−1 + nrmr−1 + 1;
D(xr−1) := 1; c(x1, . . . , xr−1) := 0; β := −1;

(2) while deg(D) ≤ B do

(2.1) {β := β + 1; [if β = p stop and report failure]
if degxr

(axr−1=β) < degxr

(a) or degxr

(bxr−1=β) < degxr

(a)
then goto (2.1);
c(β)(x1, . . . , xr−2) := RES MODp(axr−1=β , bxr−1=β);
c := (c(β)(x1, . . . , xr−2) − c(x1, . . . , xr−2, β))D(β)−1D(xr−1)

+c(x1, . . . , xr−1);
[so c is the result of the Newton interpolation]
D(xr−1) := (xr−1 − β)D(xr−1) };

return ⊔⊓
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Solving systems of algebraic equations by resultants

Theorem 4.5. (Theorem 4.3.3 in Winkler, “Computer Algebra”)
Let K be an algebraically closed field, let

a(x1, . . . , xr) =
m

∑

i=0

ai(x1, . . . , xr−1)x
i
r,

b(x1, . . . , xr) =
n

∑

i=0

bi(x1, . . . , xr−1)x
i
r

be elements of K[x1, . . . , xr] of positive degrees m and n in xr, and let
c(x1, . . . , xr−1) = resxr

(a, b). If (α1, . . . , αr) ∈ Kr is a common root of a
and b, then c(α1, . . . , αr−1) = 0. Conversely, if c(α1, . . . , αr−1) = 0, then
one of the following holds:
(a) am(α1, . . . , αr−1) = bn(α1, . . . , αr−1) = 0,
(b) for some αr ∈ K, (α1, . . . , αr) is a common root of a and b.

This theorem suggests a method for determining the solutions of a
system of algebraic, i.e. polynomial, equations over an algebraically closed
field. Suppose, for example, that a system of three algebraic equations is
given as

a1(x, y, z) = a2(x, y, z) = a3(x, y, z) = 0.

Let, e.g.,
b(x) = resz(resy(a1, a2), resy(a1, a3)),

c(y) = resz(resx(a1, a2), resx(a1, a3)),

d(z) = resy(resx(a1, a2), resx(a1, a3)).

In fact, we might compute these resultants in any other order. By Theo-
rem 4.3.3, all the roots (α1, α2, α3) of the system satisfy b(α1) = c(α2) =
d(α3) = 0. So if there are finitely many solutions, we can check for all of
the candidates whether they actually solve the system.

Unfortunately, there might be solutions of b, c, or d, which cannot be
extended to solutions of the original system, as we can see from the following
example.
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Example 4.6. Consider the system of algebraic equations

a1(x, y, z) = 2xy + yz − 3z2 = 0,

a2(x, y, z) = x2 − xy + y2 − 1 = 0,

a3(x, y, z) = yz + x2 − 2z2 = 0.

We compute

b(x) = resz(resy(a1, a3), resy(a2, a3))

= x6(x − 1)(x + 1)(127x4 − 167x2 + 4),

c(y) = resz(resx(a1, a3), resx(a2, a3))

= (y − 1)3(y + 1)3(3y2 − 1)(127y4 − 216y2 + 81)·
(457y4 − 486y2 + 81),

d(z) = resy(resx(a1, a2), resx(a1, a3))

= 5184z10(z − 1)(z + 1)(127z4 − 91z2 + 16).

All the solutions of the system, e.g. (1, 1, 1), have coordinates which are
roots of b, c, d. But there is no solution of the system having y–coordinate
1/

√
3. So not every root of these resultants can be extended to a solution

of the system. ⊔⊓


