
Grubhofer Alexander

Cylindrical Algebraic Decomposition

Grubhofer Alexander



History

� invented by George E. Collins in 1975

improved by H. Hong, C. Brown and others� improved by H. Hong, C. Brown and others

� implemented by A. Strzebonski in Mathematica



Introduction
� Input: system of polynomial inequalities over the reals

� Output: an equivalent system of inequalities, which
� has a nice structural property to answering nontrivial questions



Notations
� [Cells] Given a finite set

this set induces a decomposition (“partition”) of       into 
maximal sign-invariant cells (“regions”)

Look at an example (Mathematica)

nℝ

1 1{ ,...., } [ ,... ]m np p x x∈ℝ

Look at an example (Mathematica)

This example has 13 cells.



Notations
� Let be

the canonical projection

� [Cylindrical] Let

is called cylindrical iff

For any two cells C,D the images are either
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( ), ( )C Dπ π1. For any two cells C,D the images are either
identical or disjoint.

2. The algebraic decomposition

is cylindrical
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Algortihm
� 3 Phases

� Projection

� Lifting� Lifting

� Solution



Projection Phase
� Input polynomials

find s.t. the algebraic decomposition of

1,...., m
p p

,....,q q� find s.t. the algebraic decomposition of

is cylindrical
1,...., kq q

1 1{ ,....., , ,...., }m kp p q q



Projection Phase (2)
� The projection operator is defined as
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such that:

If B is a CAD of ,then is a CAD of A.
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Projection Phase (3)
� is defined as( )
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Projection algorithm

� Input: 

� Output: s.t. and C is CAD

C:=A

1[ ,...., ]nA x x⊆ℚ

1[ ,...., ]nC x x⊆ℚ A C⊆

1. C:=A

2. for k=n down to 2

3.

4. return C

1: ( [ ,...., ])k kC C P C x x= ∪ ∩ℚ



Lifting Phase

� Construct sample points for each cell in this decomposition 
considering one dimension after the other in a bottom-upconsidering one dimension after the other in a bottom-up
fashion.



Lifting Phase (Case 1 variable)

� look for all real roots of

� choose such that

1( ),...., ( ) ( )[ ]mp x p x x∈ ∩ℚ ℝ
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� the sample points are
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Lifting Phase (Case 2 variables)

� look for sample points of which are

free of y

� for each , look for sample points

for the polynomials
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� the sample points are
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Lifting algorithm

1[ ,...., ]nC x x⊆ℚ

( )nσ ∈ ∩ℚ ℝ

� Input:  a CAD 

� Output: a set of sample points for C

sample points for
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2. for k=2  to n do

3.

4.

5. return S



Solution (or Extension) Phase

� select the regions of interest 

check for some simplification � check for some simplification 

� construct a solution formula accordingly



Solution Phase (2)
� Assigning truth values to cells amounts to determining the

sign of polynomials at the sample point

� Quantifier elimination:
� becomes „for all sample points“x∀ ∈ℝ� becomes „for all sample points“

� becomes „for at least one sample point“

� Formula construction is easy

x∀ ∈ℝ

x∃ ∈ℝ



Example
� See Mathematica (Circle, Tacnode)



CAD
� CAD brings the system of inequalities in following form:
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CAD (1)
� for the unit circle follows:
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CAD (2)
� CAD for the unit sphere
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Example
� We have 2 formulas

The real roots of both are
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� The real roots of both are
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Example (2)
� The sample points are

� Region of truth for

it is true for x=0, false for x=1

1,0,1/ 2,1,3 / 2, 2,5 / 2,3, 4−

2 2: ( 2 0 4 3 0)x x x x x∃ ∈ − ≥ ∧ − + ≥ℝ

it is true for x=0, false for x=1

it is allways false

2 2: ( 2 0 4 3 0)x x x x x∀ ∈ − ≥ ∧ − + ≥ℝ



Example(3)
� The CylindricalDecomposition brings the system in 

following form:

x<=0||x>=3.


