Cylindrical Algebraic Decomposition

Grubhofer Alexander

History

- invented by George E. Collins in 1975
- improved by H. Hong, C. Brown and others
- implemented by A. Strzebonski in Mathematica

Introduction

- Input: system of polynomial inequalities over the reals
- Output: an equivalent system of inequalities, which
- has a nice structural property to answering nontrivial questions

Notations

- [Cells] Given a finite set $\left\{p_{1}, \ldots, p_{m}\right\} \in \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ this set induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions")

Look at an example (Mathematica)
This example has 13 cells.

Notations

- Let be $\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1} \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)$ the canonical projection
- [Cylindrical] Let $p_{1}, \ldots ., p_{m} \in \mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$
$\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical iff

1. For any two cells C,D the images $\pi_{n}(C), \pi_{n}(D)$ are either identical or disjoint.
2. The algebraic decomposition $\left\{p_{1}, \ldots, p_{m}\right\} \cap \mathbb{Q}\left[x_{1}, \ldots x_{n-1}\right]$ is cylindrical

Algortinm

- 3 Phases
- Projection
- Lifting
- Solution

Projection Phase

- Input polynomials $p_{1}, \ldots ., p_{m}$
- find $q_{1}, \ldots ., q_{k}$ s.t. the algebraic decomposition of $\left\{p_{1}, \ldots . ., p_{m}, q_{1}, \ldots ., q_{k}\right\}$ is cylindrical

Projection Phase (2)

- The projection operator is defined as

A	\mapsto	$P_{n}(A)$
\cap		\cap
$\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$		$\mathbb{R}\left[x_{1}, \ldots, x_{n-1}\right]$

such that:
If B is a CAD of $P_{n}(A)$, then $A \cup B$ is a CAD of A.

Projection Phase (3)

- $P_{n}(A)$ is defined as

$$
\begin{aligned}
P_{n}(A)= & \bigcup_{p \in A} \operatorname{coeffs}_{x_{n}}(p) \cup \bigcup_{p \in A} \operatorname{disc}_{x_{n}}(p) \cup \bigcup_{p, q \in A} \operatorname{res}_{x_{n}}(p, q) \\
& \operatorname{dim}(p)=n>2 \\
& \operatorname{disc}_{x_{n}}(p)=(-1)^{n^{*}(n-1) / 2} \operatorname{res}_{x_{n}}\left(p, \frac{\partial}{\partial x_{n}} p\right) \\
& \operatorname{disc}_{x_{n}}(p)=\operatorname{res}_{x_{n}}\left(p, \frac{\partial}{\partial x_{n}} p\right)
\end{aligned}
$$

Projection algorithm

- Input: $A \subseteq \mathbb{Q}\left[x_{1}, \ldots ., x_{n}\right]$
- Output: $C \subseteq \mathbb{Q}\left[x_{1}, \ldots ., x_{n}\right]$ s.t. $A \subseteq C$ and C is CAD

1. $\quad \mathrm{l}:=1$
2. for $k=$ =ndownto 2
3. $C:=C \cup P_{k}\left(C \cap \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]\right)$
4. return \mathbf{C}

Lifting Phase

- Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.

Lifting Phase (Case 1 variable)

$$
p_{1}(x), \ldots, p_{m}(x) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x]
$$

- look for all real roots r_{1}, \ldots, r_{k} of $\forall i: p_{i}(x)$
- choose $\rho_{0}, \ldots ., \rho_{k} \in \mathbb{Q}$ such that

$$
\rho_{0}<r_{1} \quad r_{i}<\rho_{i}<r_{i+1} \quad r_{k}<\rho_{k}
$$

- the sample points are

$$
\rho_{0}, r_{1}, \rho_{1}, r_{2}, \ldots, r_{k}, \rho_{k}
$$

Lifting Phase (Case 2 variables)

$$
p_{1}(x, y), \ldots, p_{m}(x, y) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x, y]
$$

- look for sample points $r_{1}, \ldots, r_{2 k+1}$ of $p_{i}(x, y)$ which are free of y
- for each r_{i}, look for sample points $r_{i, 1}, \ldots, r_{i, l}$ for the polynomials $p_{i}\left(r_{i}, y\right) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[y]$
- the sample points are $\left(r_{i}, r_{i, j}\right) \in(\overline{\mathbb{Q}} \cap \mathbb{R})^{2}$

Lifting algorithm

- Input: a $\mathrm{CAD} C \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$
- Output: a set of sample points $\sigma \in(\overline{\mathbb{Q}} \cap \mathbb{R})^{n} \quad$ for C

1. $\quad S_{1}:=$ sillnlle points for $C \cap \mathbb{Q}\left[x_{1}\right]$
2. fork $=2$ to ando
3. $C_{k}:=C \cap \mathbb{Q}\left[x_{1}, \ldots ., x_{k}\right]$
4. $\quad S_{k}:=\bigcup_{\sigma \in S_{k+1}} \sigma \times$ samplePoints for $\left.C_{k}\right|_{\left(x_{1}, \ldots, x_{k}\right)=\sigma}$
5. retturn $S^{\sigma \in S_{k-1}}$

Solution (or Extension) Phase

- select the regions of interest
- check for some simplification
- construct a solution formula accordingly

Solution Phase (2)

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point
- Quantifier elimination:
- $\forall x \in \mathbb{R}$ becomes „for all sample points"
- $\exists x \in \mathbb{R}$ becomes „for at least one sample point"
- Formula construction is easy

Example

- See Mathematica (Circle, Tacnode)

CAD

- CAD brings the system of inequalities in following form:

$$
\begin{aligned}
& \ldots \vee\left(.<x_{1}<. \wedge[]\right) \vee\left(x_{1}=. \wedge[]\right) \vee \ldots \\
& {[]: \Leftrightarrow \ldots \vee\left(.<x_{2}<. \wedge[]_{1}\right) \vee\left(x_{2}=. \wedge[]_{1}\right) \vee \ldots}
\end{aligned}
$$

CAD (1)

- for the unit circle follows:

$$
\begin{aligned}
& \left(x_{1}=1 \wedge y=0\right) \vee\left(x_{1}=-1 \wedge y=0\right) \vee \\
& \vee\left(-1<x_{1}<1 \wedge[]\right) \\
& {[]: \Leftrightarrow\left(y=\sqrt{1-x^{2}} \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \vee y=-\sqrt{1-x^{2}}\right)}
\end{aligned}
$$

CAD (2)

- CAD for the unit sphere
$\left(x_{1}=1 \wedge y=0 \wedge z=0\right) \vee\left(x_{1}=-1 \wedge y=0 \wedge z=0\right) \vee$
$\vee\left(-1<x_{1}<1 \wedge[]\right)$
[]: $\Leftrightarrow\left(\left(y=\sqrt{1-x^{2}} \wedge z=0\right)\right.$
$\vee\left(-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge[]_{1}\right)$
$\left.\vee\left(y=-\sqrt{1-x^{2}} \wedge z=0\right)\right)$
[]$_{1}: \Leftrightarrow\left(\left(z=-\sqrt{1-x^{2}-y^{2}} \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \vee z=\sqrt{1-x^{2}-y^{2}}\right)\right.$

Example

- We have 2 formulas

$$
\begin{aligned}
& f_{1}(x)=x^{2}-2 x \\
& f_{2}(x)=x^{2}-4 x+3
\end{aligned}
$$

- The real roots of both are

$$
\begin{aligned}
& x_{1,1}=0 ; x_{1,2}=2 \\
& x_{2,1}=1 ; x_{2,2}=3
\end{aligned}
$$

Example (2)

- The sample points are
$-1,0,1 / 2,1,3 / 2,2,5 / 2,3,4$
- Region of truth for

$$
\exists x \in \mathbb{R}:\left(x^{2}-2 x \geq 0 \wedge x^{2}-4 x+3 \geq 0\right)
$$

it is true for $\mathrm{x}=0$, false for $\mathrm{x}=1$
$\forall x \in \mathbb{R}:\left(x^{2}-2 x \geq 0 \wedge x^{2}-4 x+3 \geq 0\right)$
it is allways false

Example(3)

- The CylindricalDecomposition brings the system in following form:

$$
\mathrm{x}<=0| | \mathrm{x}>=3 .
$$

