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Master’s Thesis: The ISAC project

• initiative at Graz University of Technology
• Institute for Software Technology
• Institute for Information Systems and Computer Media

• experimental software assembling open source components
with as little glue code as possible

• feasibility study for a novel kind of transparent single-stepping
software for applied mathematics

• experimenting with concepts and technologies from
• computer mathematics (theorem proving, symbolic

computation, model based reasoning, etc.)
• e-learning (knowledge space theory, usability engineering,

computer-supported collaboration, etc.)

• The development employs academic expertise from several
disciplines. The challenge for research is interdisciplinary
cooperation.



Rewriting, a basic CAS technique

This technique is used in simplification, equation solving, and
many other CAS functions, and it is intuitively comprehensible.
This would make rewriting useful for educational systems—if one
copes with the problem, that even elementary simplifications
involve hundreds of rewrites.

As an example see:
http://www.ist.tugraz.at/projects/isac/www/content/

publications.html#DA-M02-main



“Reverse rewriting” for comprehensible justification

Many CAS functions can not be done by rewriting, for instance
cancelling multivariate polynomials, factoring or integration.
However, respective inverse problems can be done by rewriting and
produce human readable derivations.

As an example see:
http://www.ist.tugraz.at/projects/isac/www/content/

publications.html#GGTs-von-Polynomen



Equation solving made transparent

Re-engineering equation solvers in “transparent single-stepping
systems” leads to types of equations, arranged in a tree. ISAC’s
tree of equations are to be compared with what is produced by
tracing facilities of Mathematica and/or Maple. How could ISAC’s
equation solver be extended?

See also:
http://www.ist.tugraz.at/projects/isac/www/content/

publications.html#da-mlang



ISAC, a transparent single-stepping system

What distinguishes ISAC from a CAS? What are the advantages of
a system based on a computer theorem prover (CTP)? What novel
kinds of services can such a system provide for education?

See also:
https://lsiit-cnrs.unistra.fr/DG-Proofs-Construction/

index.php/ISAC system
http://www.ist.tugraz.at/projects/isac



CAS functionality adopted by CTP

There are good reasons for warning “never trust a CAS”.
Computer theorem provers (CTP), however, allow users to trust
the correctness of their results. Now, since more and more CAS
functionality is taken over by CTP — how can such trust be
ensured?

See also:
http://www.score.cs.tsukuba.ac.jp/̃ kaliszyk/docs/ck thesis webdoc.pdf



Axiom

• “The Scientific Computation System”

• general-purpose computer algebra system

• freely available from http://www.axiom-developer.org

• Axiom is a literate program



History

• “Scratchpad”, developed since 1971 at IBM

• key developers: Richard Dimick Jenks, Barry Trager, Stephen
Watt, James Davenport, Robert Sutor, Scott Morrison

• sold to the NAG (Numerical Algorithms Group) in the 1990s
and renamed to “Axiom”

• 2001: commercial activity was abandoned and Axiom was
distributed as open source

• 2007: split into two branches: OpenAxiom and FriCAS



Literate Programming

• programming paradigm introduced by Donald Knuth

• program and documentation are woven together

• like an essay in natural language

• contains macros and code snippets



Design

• strongly typed

• interpreter language: SPAD

• extension languages: A# and Aldor

• every object has a type

• types are in a mathematically correct type hierarchy



Types

• types in Axiom are dynamic objects, i.e., they are created at
runtime

• algebraic types: polynomials, matrices, power series, etc.

• types as data structures: lists, dictionaries, input files, etc.

• types combine in any meaningful way, e.g., polynomials of
matrices, etc.



Categories

• define algebraic properties

• ensure mathematical correctness, e.g., don’t allow to build
matrices of input files

• through categories, programs can discover certain properties,
e.g.,

• polynomials of continued fractions are commutative
• polynomials of matrices are not commutative

• categories allow to define algorithms in their most general
setting, e.g., Euclid’s gcd algorithm can be implemented such
that it works over any Euclidean domain



Starting Axiom (FriCAS)

ckoutsch@gonzales:~$ axiom

Checking for foreign routines

AXIOM="/zvol/fricas/x86_64/lib/fricas/target/x86_64-unknown-linux"

spad-lib="/zvol/fricas/x86_64/lib/fricas/target/x86_64-unknown-linux/lib/libspad.so"

foreign routines found

openServer result 0

FriCAS (AXIOM fork) Computer Algebra System

Version: FriCAS 1.0.9

Timestamp: Monday June 7, 2010 at 12:22:18

--------------------------------------------------------

Issue )copyright to view copyright notices.

Issue )summary for a summary of useful system commands.

Issue )quit to leave FriCAS and return to shell.

--------------------------------------------------------

(1) ->



Numbers (1)

(1) -> 8

(1) 8

Type: PositiveInteger

(2) -> -8

(2) - 8

Type: Integer

(3) -> 2/3

2

(3) -

3 Type: Fraction(Integer)

(4) -> 2/3 :: Float

(4) 0.6666666666 6666666667

Type: Float



Numbers (2)

(5) -> factor(5040)

4 2

(5) 2 3 5 7

Type: Factored(Integer)

(6) -> % * 121

4 2 2

(6) 2 3 5 7 11

Type: Factored(Integer)

(7) -> roman(1998)

(7) MCMXCVIII

Type: RomanNumeral

(8) -> % + 2

(8) MM

Type: RomanNumeral



More complicated numbers

(9) -> decimal(1/352)

__

(9) 0.0028409

Type: DecimalExpansion

(10) -> (2 + sqrt 63)^(1/3)

+---------+

3| +-+

(10) \|3\|7 + 2

Type: AlgebraicNumber

(11) -> factor(89 - 23*%i)

2 2

(11) - (1 + %i)(2 + %i) (3 + 2%i)

Type: Factored(Complex(Integer))

(12) -> a : PrimeField(7) := 13

(12) 6

Type: PrimeField(7)



Polynomials (1)

(3) -> x^6

6

(3) x Type: Polynomial(Integer)

(4) -> x^(-6)

1

(4) --

6

x Type: Fraction(Polynomial(Integer))

(5) -> x/6

1

(5) - x

6 Type: Polynomial(Fraction(Integer))

(6) -> % :: Fraction Polynomial Integer

x

(6) -

6 Type: Fraction(Polynomial(Integer))



Polynomials (2)

(7) -> (x+y)^3

3 2 2 3

(7) y + 3x y + 3x y + x

Type: Polynomial(Integer)

(8) -> (x+y)^3 / (x+y)

2 2

(8) y + 2x y + x

Type: Fraction(Polynomial(Integer))

(9) -> % :: Polynomial(Integer)

2 2

(9) y + 2x y + x

Type: Polynomial(Integer)



Coercion

• an automatic transformation of an object of one type to an
object of a similar target type

• can be done explicitly by the infix operation
object :: type

• is done automatically by the interpreter when a type mismatch
occurs



Simple Assignments

(1) -> x := 4

(1) 4

Type: PositiveInteger

(2) -> x := x + z

(2) z + 4

Type: Polynomial(Integer)

(3) -> x : Integer

You cannot declare x to be of type Integer because

either the declared type of x or the type of the

value of x is different from Integer .

(3) -> y : Integer

Type: Void

(4) -> y := 5/6

Cannot convert right-hand side of assignment to an

object of the type Integer of the left-hand side.



The Fibonacci example

(10) -> fib(0) == 0

Type: Void

(11) -> fib(1) == 1

Type: Void

(12) -> fib(n) == fib(n-1) + fib(n-2)

Type: Void

(13) -> fib(90)

Compiling function fib with type

Integer -> NonNegativeInteger

Compiling function fib as a recurrence relation.

(13) 2880067194370816120

Type: PositiveInteger



Data structures: Stream

(7) -> s := [fib(i) for i in 0..]

Compiling function fib with type

Integer -> NonNegativeInteger

Compiling function fib as a recurrence relation.

(7) [0,1,1,2,3,5,8,13,21,34,...]

Type: Stream(NonNegativeInteger)

(8) -> s.1

(8) 0

Type: NonNegativeInteger

(9) -> s.100

(9) 218922995834555169026

Type: PositiveInteger



Data structures: Series

24) -> s := series(1/(1-x)^3, x=0)

(24)

2 3 4 5 6 7

1 + 3x + 6x + 10x + 15x + 21x + 28x + 36x

8 9 10 11

+ 45x + 55x + 66x + O(x )

Type: UnivariatePuiseuxSeries(Expression(Integer),x,0)

(25) -> coefficient(s, 200)

(25) 20301

Type: Expression(Integer)



Data structures: Series

(26) -> exp(s)

(26)

21%e 2 65%e 3 747%e 4 10161%e 5 52941%e 6

%e + 3%e x + ---- x + ---- x + ----- x + ------- x + ------- x

2 2 8 40 80

+

931467%e 7 3634053%e 8 18497567%e 9 1001966309%e 10 11

-------- x + --------- x + ---------- x + ------------ x + O(x )

560 896 1920 44800

Type: UnivariatePuiseuxSeries(Expression(Integer),x,0)

28) -> D(s)

(28)

2 3 4 5 6 7 8 9

3 + 12x + 30x + 60x + 105x + 168x + 252x + 360x + 495x + 660x

+

10 11

858x + O(x )

Type: UnivariatePuiseuxSeries(Expression(Integer),x,0)



Polymorphic Algorithms

(1) -> sys := [3*x^3+y+1=0, y^2=4]

3 2

(1) [y + 3x + 1= 0,y = 4]

Type: List(Equation(Polynomial(Integer)))

(2) -> solve(sys, 10^(-20))

204644127657076372449

(2) [[y= - 2,x= ---------------------],[y= 2,x= - 1]]

295147905179352825856

Type: List(List(Equation(Polynomial(Fraction(Integer)))))

(3) -> solve(sys, 1.e-20)

(3) [[y= - 2.0,x= 0.6933612743 5063470484],

[y= 2.0,x= - 1.0]]

Type: List(List(Equation(Polynomial(Float))))



Polymorphic Algorithms

(4) -> radicalSolve(sys)

(4) +---+ +---+

- \|- 3 + 1 \|- 3 + 1

[[y= 2,x= - 1], [y= 2,x= ------------], [y= 2,x= ----------],

2 2

+---+ +-+ +---+ +-+

1 \|- 1 \|3 - 1 - \|- 1 \|3 - 1

[y= - 2,x= ----], [y= - 2,x= --------------], [y= - 2,x= ----------------]]

3+-+ 3+-+ 3+-+

\|3 2\|3 2\|3

Type: List(List(Equation(Expression(Integer))))

(5) -> solve(sys)

2 3

(5) [[y= 2,x= - 1],[y= 2,x - x + 1= 0],[y= - 2,3x - 1= 0]]

Type: List(List(Equation(Fraction(Polynomial(Integer)))))



Design principles (1)

Types are defined by abstract datatype programs.

• basic types are called domains of computation (“domains”)

• definition of a domain:
Name(...): Exports == Implementation

• the capitalized Name refers to the class of its members, e.g.,
Integer denotes the “class of integers”

• parameters (in parentheses) are usually domains again, e.g.,
Matrix(Integer) denotes “matrices over the integers” or
List(Matrix(Polynomial(Integer)))

• Exports specifies operations for creating and manipulating
objects of the domain

• Integer exports 0, 1, +, -, and *



Design principles (2)

The type of basic objects is a domain or subdomain.

• every Axiom object belongs to a unique domain

• the domain of an object is also called its type

• subdomain: a domain with a “membership predicate”, e.g.,
PositiveInteger is a subdomain of Integer with the
predicate “> 0”

• subdomains are defined by abstract datatype programs, similar
to domains

• the Exports part must be a subset of the exports of the
domain

• the Implementation part optionally gives special definitions



Design principles (3)
Domains have types called categories.

• the type of a domain or subdomain is called a category

• Note: category here doesn’t coincide with the algebraic
concept of a category

• categories are described by programs of the form
Name(...): Category == Exports

• Name designates a class of domains, e.g.,
the category Ring designates the class of all rings.

• the type of every category is the distinguished symbol
Category

• the Exports part defines a set of operations, e.g.,
the category Ring exports 0, 1, +, -, and *

• categories serve to ensure type-correctness, e.g.,
the definition Matrix(R: Ring) allows matrices of
polynomials, but not matrices of lists.



Domains and Categories (1)

(1) -> Integer

(1) Integer

Type: Type

(2) -> Ring

(2) Ring

Type: Category

(3) -> Integer has Ring

(3) true

Type: Boolean

(4) -> Fraction(Integer) has Field

(4) true

Type: Boolean



Domains and Categories (2)

(5) -> Polynomial(Matrix(Integer))

Polynomial(Matrix(Integer)) is not a valid type.

(5) -> Matrix(Integer) has Ring

(5) false

Type: Boolean

(6) -> SquareMatrix(3,Integer) has Ring

(6) true

Type: Boolean



Definition of Categories

The definition of a category has the syntax:
CategoryForm : Category == Extensions [ with Exports ]

Example:

SetCategory(): Category ==

Join(Type, CoercibleTo OutputForm) with

"=" : ($,$) -> Boolean

• Type is the category of all domains

• all exports are constants or operations with type “mapping”

• $ denotes “this domain”

• SetCategory is now “the category of all domains that are
sets”.



Extension of Categories

Categories form a hierarchy by extension.

Example:

SemiGroup(): Category == SetCategory with

"*": ($,$) -> $

"**": ($,PositiveInteger) -> $

• each category (except Type) has one or more parents

• the parents are mentioned before the with part

• any domain can be used in a signature

• default definitions (e.g., for **) can be given



Design principles (4)

Operations can refer to abstract types.

• all operations have prescribed source and target types

• symbolic domains:
R: Ring

power: (R, NonNegativeInteger): R -> R

power(x,n) == x**n

• using symbolic domains, algorithms can be programmed in
their most general setting



Design principles (5)

Categories form hierarchies.

• categories form directed, acyclic graphs

• Example:

SetCategory

Ring

IntegralDomain

Field

Finite OrderedSet



Design principles (6)

Domains belong to categories by assertion.

• each domain must assert which categories it belongs to

• for example, the Exports part in Integer reads
Join(OrderedSet, IntegralDomain, ...) with ...

• Integer inherits 0, 1, +, -, and * from Ring

• assertions can be conditional, e.g.
Complex(R) defines its exports by:
Ring with ... if R has Field then Field ...

• thus Complex(Float) is a field, but Complex(Integer) is
not.



Design principles (7)

Packages are clusters of polymorphic operations.

• a package is a special kind of domain

• for example, define some algorithms for solving equations of
polynomials over an arbitrary field F:
MySolve(F: Field): Exports == Implementation

• the Exports part specifies the solve operations that the
programmer wants to export

• the algorithms then work for any field F



Example: Package definition

SortPackage(S,A) : Exports == Implementation where

S: Object

A: IndexedAggregate(Integer,S)

with (finiteAggregate; shallowlyMutable)

Exports ==

bubbleSort!: (A, (S,S)->Boolean) -> A

insertionSort!: (A, (S,S)->Boolean) -> A

if S has OrderedSet then

bubbleSort!: A -> A

insertionSort!: A -> A

Implementation ==

bubbleSort!(m,f) ==

...

insertionSort!(m,f) ==

...



Design principles (8)

The interpreter builds domains dynamically.

• the interpreter reads user input and then builds the needed
domains

• Example: create the matrix

M =

(
x2 + 1 0

0 x/2

)
• interpreter builds the domain tower Matrix, Polynomial,
Fraction, Integer

• operations are called down the tower, and the result is passed
back up



Design principles (9)

Axiom code is compiled.

• programs are statically compiled, and then placed into library
modules

• static type-checking at compile time



Design principles (10)

Axiom is extensible.

• the entire Axiom library is written in Axiom language

• code-economy

• automatic, guaranteed interaction between old and new code:
• new algorithm with parameter of type Field will work with

every field defined in the system (past, present, future)
• introduce a new field, and it will work as input of any

algorithm that requires a field



Influence of Axiom on other CAS

Try ?Domains in Maple:

. . .
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