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Sage

• general purpose CAS

• freely available

• open source under the GNU General Public License

• slogan: “open source alternative to Magma, Maple,
Mathematica, and MATLAB”



History

• founder and lead developer:
William Stein

• first release in 2005

• many developers around the world

• release early, release often

• http://www.sagemath.org

• http://www.sagenb.com

William Stein speaking at ISSAC’2008 in
Hagenberg. Photo: Christoph Koutschan



Sage Philosophy

• Useful: Sage’s intended audience is mathematics students,
teachers, and research mathematicians. The aim is to provide
software that can be used to explore and experiment with
mathematical constructions in algebra, geometry, number
theory, calculus, numerical computation, etc.

• Efficient: Be fast. Sage uses highly-optimized mature
software like GMP, PARI, GAP, and NTL, and so is very fast
at certain operations.

• Free and open source: The source code must be freely
available and readable, so users can understand what the
system is really doing and more easily extend it. Just as
mathematicians gain a deeper understanding of a theorem by
carefully reading or at least skimming the proof, people who
do computations should be able to understand how the
calculations work by reading documented source code.



Sage Philosophy (2)

• Cooperation: Provide robust interfaces to most other
computer algebra systems, including PARI, GAP, Singular,
Maxima, KASH, Magma, Maple, and Mathematica. Sage is
meant to unify and extend existing math software.

• Python: Sage is based on the programming languages Python
and Cython.



Python / Cython

• developed in the late 1980s

• interpreted high-level programming language

• design philosophy emphasizes code readability (indentation!)

• object-oriented, but also other programming styles are
supported

• dynamically typed

Cython is an extension language for writing C and C++ modules
for the Python runtime:

• call C/C++ functions from Cython

• strongly typed



Why Python?

• excellent support for documentation of functions and
packages in the source code

• many packages available: numerical analysis and linear
algebra, 2D and 3D visualization, networking

• Python is easy to compile from source on most platforms

• Python has a sophisticated system of exception handling

• debugger with extensive stack trace

• saving objects to disk files is well-supported in Python

• well thought out and robust memory manager and garbage
collector

• existing language



Pre-Parser

Python syntax:

• ^ denotes XOR: 8^2 gives 10

• ** denotes exponentiation: 3**4 gives 81

• / denotes the integer quotient: 7/3 gives 2

Sage pre-parses all input such that

• 8^2 is interpreted as a power

• 7/3 is recognized as a rational number

• etc.



Quick start into Sage

Sage worksheets are displayed in notebook style in your web
browser:

• upload worksheets from files

• download a worksheet to a file

Observations:

• results of assignments are not displayed

• symbolic variables (except x) have to be defined:
y = var(’y’)

• many commands allow standard syntax for input instead of
object-oriented syntax:
2.sqrt().n() can be inputted as n(sqrt(2))

• list indexing is 0-based

• every object has a type
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Some issues

i and I are used to denote the imaginary unit, n is used for
numerical approximation. These symbols are not protected!

Example:

i = 1;
reset(’i’)
n(pi)
n = 1;
n(pi)

−→ use CC(re,im) to create complex numbers!
−→ use numerical approx instead of n!



Types

Strange experiences with types:
type(add)

type(sin)

type(exp)

type(ln)

type(log)

type(bessel J)



Getting help

There are many ways to get help:

• Tab completion:
• f+〈Tab〉 displays possible completions for f
• f.+〈Tab〉 displays methods that are available for the object f

• f? displays help

• f?? displays sourcecode

• Reference manual, Tutorial

Examples:
a = 2
a. 〈Tab〉
factor?
factor??
parent?



Functions

There are several ways to define functions.

1. Define a Python function:
def f(x): return x^2

2. Define a “callable symbolic expression”:
g(x) = x^2

3. Define unspecified functions:
h = function(’h’, x)

Cases (2) and (3) describe functions in the mathematical sense
(try, e.g., g.diff() and h.diff()). The variant (3) can be used
for inputting differential equations (try, e.g.,
desolve(diff(h,x)+h-1, [h,x])). Functions of the form (1)
can be plotted, but not differentiated or integrated.
Compare also type(f), type(g), and type(h).



Plotting

Syntax is very simple:
plot(f, (-2,2))
circle((0,0), 1, rgbcolor=(1,1,0))

Plots can be added:
p1 = plot(f, (-2,2))
p2 = circle((0,0), 1, rgbcolor=(1,1,0)) show(p1+p2)



Programming in Sage

• Python syntax

• indentation matters!

• def 〈function name〉(〈arg1〉, 〈arg2〉, . . . ):
• no semicolons necessary for line ends

• the usual program control commands:
if (〈condition〉): . . . else/elif
while (〈condition〉):
for 〈variable〉 in 〈range〉:
etc.



Programming in Sage

A simple example (note the flexible use of arguments):

def is_divisible_by(number, divisor=2):
return number%divisor == 0

is_divisible_by(6)

is_divisible_by(6, 5)

is_divisible_by(divisor=2, number=6)



Issues with functions

Try the following:

def f(x):
if x<2:

return 0
else:

return x-2
plot(f(x), 0, 4)

Correct way to plot this function:
plot(f, 0, 4)
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Cube root with bisections

def cuberoot1(c, prec):
s = sign(c);
c = abs(c);
a = 0;
b = max(c, 1);
count = 0;
while (b-a > prec):

m = (a+b)/2;
if (m^3 < c):

a = m
else:

b = m
count = count + 1

print ’did %s loops’%(count)
return n(s*m);



Cube root with Heron

def cuberoot2(c, prec):
x = 1
count = 0
while (abs(x^3-c) > prec):

x = (2*x^3+c)/(3*x^2)
count = count + 1

print ’did %s loops’%(count)
return n(x);



Comparison

Compare
time cuberoot1(500, 10^(-6))
time cuberoot2(500, 10^(-6))

Why is Heron much slower than bisections?
Count the number of loops:

• bisection method: 29 loops

• Heron: 13 loops

−→ Keep control of your expressions!
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Define new data types
Encapsulating mathematical objects with classes is a powerful
technique that can help to simplify and organize your Sage
programs.

Example: define a class that represents the list of even positive
integers up to n:

class Evens(list):
def __init__(self, n):

self.n = n
list.__init__(self, range(2, n+1, 2))

def __repr__(self):
return "Even positive numbers up to n."

• the class Evens derives from the built-in type list
• the method init initializes the object when it is created
• the method repr prints the object out
• the list constructor method is called in line 4
• an object of the class Evens is created by e = Evens(10)



Basic Rings

When defining matrices, vectors, or polynomials, it is sometimes
useful and sometimes necessary to specify the ring over which it is
defined:

• ZZ: integers {. . . ,−2, 1, 0, 1, 2, . . . }
• QQ: rational numbers

• RR: real numbers (floating point numbers)

• CC: complex numbers

Examples:
-4 in ZZ
pi in QQ
I+1 in RR
parent(4/3)



Polynomial Rings

Create a univariate polynomial ring:

1. R = PolynomialRing(QQ, ’t’)

2. S = QQ[’t’]

3. T.<t> = PolynomialRing(QQ) or T.<t> = QQ[’t’]

When using (1) and (2), the variable t will not be defined, in
contrast to option (3).

Create multivariate polynomial rings

• R = PolynomialRing(RealField(10), 3, "rst")

• R.<r,s,t> = PolynomialRing(QQ)

Try also:
R.gens()
R.objgens()



Why Polynomial Rings?

Multiply two polynomials (in the ring):

ring = PolynomialRing(QQ, ’x’)
p1 = ring.random_element(degree=200);
p2 = ring.random_element(degree=200);
time p3 = p1*p2

Now the same (with symbolic expressions):

v = var(’v’)
p1 = (p1 + v) - v
type(p1)
p2 = (p2 + v) - v
time p4 = expand(p1*p2)
expand(p3 - p4)



Multiplying polynomials is fast!

def time_polymult(deg):
ring = PolynomialRing(ZZ, ’x’)
res = [];
d = 1;
while (d < deg):

p1 = ring.random_element(degree=d)
p2 = ring.random_element(degree=d)
t = cputime()
p1 = p1*p2
res.append((d,cputime(t)))
d = ceil(11/10*d)

return res

timing = time_polymult(50000)
list_plot(timing)



Other Rings and Fields
Dividing two polynomials constructs an element of the fraction
field (which Sage creates automatically):

x = QQ[’x’].0
f = x^3 + 1
g = x^2 - 17
h = f/g; h
h.parent()

Now Laurent series: R.<x> = LaurentSeriesRing(QQ)

Sage also knows about finite fields, p-adic integers, the ring of
algebraic numbers, etc.:

GF(3)
GF(27, ’a’)
Zp(5)
sqrt(3) in QQbar



Ideals

Define two polynomials:

R = PolynomialRing(QQ, 2, "xy")
x,y = R.gens()
f = x^2+y^2+1; g = x^3+2*x*y-y^3

Next we create the ideal 〈f, g〉 generated by f and g:

id1 = (f,g)*R
id1
id1.groebner_basis()

−→ These computations are executed in Singular.



Interface to Singular

Call Singular directly from Sage:

ring r1 = 0,(t,x,y,z),ls;
r1
ideal i1 = x-t2,y-t3,z;



Group Theory

G = PermutationGroup([’(1,2,3)(4,5)’, ’(3,4)’])
G.order()
G.random_element()

−→ These computations are executed in GAP.



Number Theory

time
factor(109149643706541976490211967825493555058875303071)

time
pari(’factor(109149643706541976490211967825493555058875303071)’)

time
mathematica(’FactorInteger[109149643706541976490211967825493555058875303071]’)

−→ These computations are executed in PARI.


