
Information Systems
SQL

Nikolaj Popov

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

popov@risc.uni-linz.ac.at

Outline

SQL

Table Creation

Populating and Modifying Tables

Querying

SQL

I SQL: a standard interactive and programming language for
getting information from and updating a database.

I The first version of SQL (initially called SEQUEL) was
developed in 1970s at IBM, based on Codd’s original ideas.

I Standardized since 1986.
I Latest release: SQL 200. . . .
I As it is widely accepted, SQL stands for Structured Query

Language.
I SQL specifies:

I a data definition language (DDL),
I a data manipulation language (DML),
I embedded SQL (to make relational databases accessible in

other programming languages, like C, Pascal, PL/I).

SQL

I The SQL language is broken into several distinct parts:
I SQL schema statements, used to define the data structures

stored in the database;
I SQL data statements, used to manipulate the data

structures previously defined using SQL schema
statements.

I In SQL terminology a relation is a table, an attribute is a
column and a tuple is a row.

Standard Types

I char(n) a character string of fixed length n,
I int an integer (length can be implementation/hardware

dependent),
I numeric(i, d) a numerical value with i digits in the integer

part (and a sign) and d digits in the decimal part,
I real a single precision floating point number,
I date storing the years in four digits and the months and the

days in two,
I time in hh:mm:ss format.

Standard Types

I Coercion between compatible types, and the usual
operations (e.g. arithmetic for numerical types, or string
concatenation) are supported.

I Many DBMSs also support the BLOB type (Binary Large
OBject).

I Simple domain definitions can be made, for example:
CREATE DOMAIN name type AS CHAR(20)

Table Creation. Step 1: Design

I Let’s define a table to hold information about a person.
I First, decide what kind of information should be included in

the database. Assume:
I Name
I Gender
I Birth date
I Address
I Favorite foods

I Next, assign column names and data types:

Column Type Allowable values
Name Varchar(40)
Gender Char(1) M, F
Birth_date Date
Address Varchar(100)
Favorite_foods Varchar(200)

Table Creation. Step 2: Refinement

Problems with the definition of the person table:
I The name and address columns are compound (first

name, last name for name, and street, city, postal code,
country for address).

I Multiple people can have the same name, gender, birth
date, etc., there are no columns in the person table that
guarantee uniqueness.

I The favorite_foods columns is a list containing 0,1, or more
independent items. It would be best to create a separate
table for this data that includes a foreign key to the person
table.

Table Creation. Step 2: Refinement
I New version of the person table:

Column Type Allowable values
Person_id Smallint
First_name Varchar(20)
Last_name Varchar(20)
Gender Char(1) M,F
Birth_date Date
Street Varchar(30)
City Varchar(20)
State Varchar(20)
Country Varchar(20)
Postal_code Varchar(20)

I Person_id will serve as the primary key.
I The favorite_food table includes a foreign key to the person

table:
Column Type
Person_id Smallint
Food Varchar(20)

Table Creation. Step 3: Building SQL Schema
Statements

I After the design is complete, the next step is generate SQL
statements to create tables in the database:
CREATE TABLE person
(person_id SMALLINT,

fname VARCHAR(20),
lname VARCHAR(20),
gender CHAR(1) CHECK (gender in (’M’, ’F’)),
birth_date DATE,
address VARCHAR(30),
city VARCHAR(20),
state VARCHAR(20),
country VARCHAR(20),
postal_code VARCHAR(20),
CONSTRAINT pk_person PRIMARY KEY (person_id)

);

Table Creation. Step 3: Building SQL Schema
Statements

I If we want to make sure that the table exists, we can use
the MySQL DESC command:

mysql > DESC person;

Table Creation. Step 3: Building SQL Schema
Statements

I Creating the favorite_food table:
CREATE TABLE favorite_food
(person_id SMALLINT,

food VARCHAR(20),
CONSTRAINT pk_favorite_food

PRIMARY KEY (person_id, food),
CONSTRAINT fk_person_id

FOREIGN KEY (person_id)
REFERENCES person (person_id)

);

Populating and Modifying Tables. Insert

I Four SQL data statements: insert, update, delete, and
select.

I Three main components to an insert statement:
I The name of the table into which to add the data.
I The names of the columns in the table to be populated.
I The values with which to populate the columns.

I INSERT INTO person
(person_id, fname, lname, gender, birth_date)
VALUES (1, ’William’,’Turner’, ’M’, ’1972-05-27’);

Populating and Modifying Tables. Insert

I More insert statements:
INSERT INTO favorite_food (person_id, food)

VALUES (1, ’pizza’);
INSERT INTO favorite_food (person_id, food)

VALUES (1, ’cookies’);
INSERT INTO favorite_food (person_id, food)

VALUES (1, ’nachos’);

Select

I We can look at the data just added to the table person by
issuing a select statement:

I SELECT person_id, fname, lname, gender, birth_date
FROM person;

I If there were more than one row in the table, we could add
a ’where’ clause to specify that we only want to retrieve
data for the row having a value of 1 for the person_id
column:
SELECT person_id, fname, lname, birth_date

FROM person
WHERE person_id = 1;

Select

I The following query retrieves William’s favorite foods in
alphabetic order using an ’order by’ statement:

I SELECT food
FROM favorite_food
WHERE person_id = 1
ORDER BY food;

Insert and Select

I Another insert statement adds Susan Smith to the person
table:

I INSERT INTO person
(person_id, fname, lname, gender, birth_date,

address, city, state, country, postal_code)
VALUES (2, ’Susan’,’Smith’, ’F’, ’1975-11-02’,

’23 Maple St.’, ’Arlington’, ’VA’, ’USA’, ’20220’);
I We can query the person table again:
I SELECT person_id, fname, lname, gender, birth_date

FROM person;

Updating

I When the data about William Turner was added to the
table, data for the various address columns was omitted in
the insert statement.

I These columns can be populated via an update statement:
I UPDATE person

SET address = ’1225 Tremont St.’,
city = ’Boston’,
state = ’MA’,
country = ’USA’,
postal_code = ’02138’

WHERE person_id = 1;
I update can modify more than one rows at once.
I If the WHERE clause is omitted than all rows will be

updated.

Deleting

I Delete Susan Smith from the person table:
I Delete FROM person

WHERE person_id = 2;
I delete can delete more than one rows at once.
I If the WHERE clause is omitted than all rows will be

deleted.

When Good Statements Go Bad

I Nonunique primary key:
I INSERT INTO person

(person_id, fname, lname, gender, birth_date)
VALUES (1, ’Charles’,’Fulton’, ’M’, ’1968-01-15’);

I Error message will be given.

When Good Statements Go Bad

I Nonexistent foreign key:
I INSERT INTO favorite_food (person_id, food)

VALUES (666, ’lasagna’);
I There is no person in the person table with the id 666. An

error message will be issued.

When Good Statements Go Bad

I Column value violation:
I UPDATE person

SET gender = ’Z’
WHERE person_id = 1;

I Error message. The gender value ’Z’ violates CHECK
constraint.

Dropping Tables

I DROP TABLE favorite_food;
Drops the table favorite_food;

I DROP TABLE person;
Drops the table person;

Querying

I select statement.
I Before executing queries, the server checks the following

things:
I Do you have permission to execute the statement?
I Do you have permission to access the desired data?
I Is your statement syntax correct?

I If the query passes these three tests, then it is handed to
the query optimizer.

I The query optimizer determines the most efficient way to
execute the query and creates the execution plan used by
the server.

I Once the server has finished executing the query, the
result set is returned to the calling application.

Querying

I Query example (suppliers-parts database):
I SELECT sname, city

FROM S;
I The result table will be returned, that contains two columns

and five rows.

Query Clauses

I The select statement is made up from several components,
not all of them are mandatory:

I SELECT: Determines which columns to include in the
query’s result set.

I FROM: Identifies the tables from which to draw data and
how the tables should be joined.

I WHERE: Restricts the number of rows in the final result
set.

I ORDER BY: Sorts the rows of the final result set by one or
more columns.

The SELECT Clause

I Show all the columns in the suppliers table:
SELECT *
FROM S;

I In addition to specifying all of the columns via the asterisk
character, you can explicitly name the columns we are
interested in, such as:
SELECT sno, sname, status, city
FROM S;

I We can choose to include only a subset of the columns in
the suppliers table as well:
SELECT sno, sname
FROM S;

The SELECT Clause

I We can include in the select clause such things as:
I Literals, such as numbers or strings
I Expressions, such as: status * 10
I Built-in function calls, such as: ROUND(status, 10)

SELECT sno,
status * 10,
sname

FROM S;
I When the query simply calls built-in functions and does not

retrieve data from any tables, there is no need for a FROM
clause:
SELECT current_date, 2+2;

The SELECT Clause

I Adding a column alias after each element of the SELECT
clause will display the aliases as the column name:
SELECT sno,

status * 10 AS status_x_10,
sname AS last_name

FROM S;

The SELECT Clause

I In some cases, a query might return duplicate rows of data:
SELECT city
FROM S;

I To get distinct rows, we can add the keyword DISTINCT:
SELECT DISTINCT city
FROM S;

I Generating a distinct set of results requires the data to be
sorted, which can be time consuming for large result sets.

The FROM Clause

I The FROM clause defines the tables used by a query,
along with the means of linking the tables together.

I Three types of tables can be used in the FROM clause
I Permanent tables (i.e., created using the create table

statement)
I Temporary tables (i.e., rows returned by a subquery)
I Virtual tables (i.e., created using the create view statement)

I Queries on the previous slides used permanent tables.

The FROM Clause. Subqueries

I The FROM clause using a temporary table:
SELECT e.sname, e.city
FROM (SELECT sname, status, city FROM S) AS e;

I A subquery against the S table returns three columns, and
the containing query references two of the three available
columns.

I The subquery is referenced by the containing query via its
alias, which, in this case, is e.

The FROM Clause. Views

I A view is a query that is stored in the data dictionary.
I It looks and acts like a table, but there is no data

associated with a view.
I When we issue a query against a view, the query is

merged with the view definition to create a final query to be
executed.

CREATE VIEW supplier_view AS
SELECT sno, sname, status
FROM S;

I After the view has been created, no additional data is
created: the select statement is simply stored by the server
for future use.

I Now that the view exists, we can issue queries against it:
SELECT sno, sname
FROM supplier_view;

The FROM Clause. Joins

I Joins link information from several tables together.
SELECT sno, sname, s.city, pno, pname
FROM s INNER JOIN p
ON s.city = p.city;

The WHERE Clause

I The where clause is the mechanism for filtering out
unwanted rows from your result set.

I Selecting only those rows from S that have London in the
city column:

SELECT *
FROM s
WHERE city = ’London’;

I Selecting only those rows from S that have Paris in the city
column and whose status is greater than 10:

SELECT *
FROM s
WHERE city = ’Paris’ AND status > 10;

The WHERE Clause

I Selecting those rows from P that have in the pname
column parts whose names start either with ’S’ or with ’C’:

SELECT *
FROM p
WHERE pname LIKE ’S%’ OR pname LIKE ’C%’;

I Get all triples of supplier numbers and the city names such
that the suppliers concerned are colocated in the city:

SELECT A.sno AS SA, B.sno as SB, A.city
From S as A, S as B
WHERE A.city = B.city AND A.sno < B.sno;

The ORDER BY Clause

I The order by clause is the mechanism for sorting our result
set using either raw column data or expressions based on
column data.

I Sorted in ascending order:
SELECT *
FROM spj
ORDER BY qty;

I Sorted in descending order:
SELECT *
FROM spj
ORDER BY qty DESC;

Querying Multiple Tables

I Join: The mechanism for bringing multiple tables together
in the same query.

I Various kinds of joins: Cross join (cartesian product), inner
join, outer joins

I Cross join is the simplest kind of join:
SELECT *
FROM S CROSS JOIN P;

Querying Multiple Tables

I Inner join: Joining tables on their common columns
SELECT sno, sname, status,

s.city, pno, pname, weight
FROM s INNER JOIN p ON s.city = p.city;

I If the names of the columns used to join the two tables are
identical, which is true in the previous query, we can use
the USING subclause instead of the ON subclause:

SELECT sno, sname, status,
s.city, pno, pname, weight

FROM s INNER JOIN p USING (city);

Querying Multiple Tables

I Three or more tables can be queried in a similar way:
SELECT sno, sname, status,

s.city, pno, pname, weight, jno
FROM s INNER JOIN p USING (city)

INNER JOIN j USING (city);
I We can have subqueries as tables:

SELECT sno, sname, status,
s.city, pno, pname, weight, jno

FROM s INNER JOIN
(SELECT pno,city,pname,weight
FROM P
WHERE weight > 14)

USING (city)
INNER JOIN j USING (city);

Set Operations

I Union, intersection, set minus, complement.
I UNION combines all rows from two tables and requires the

number of columns in the tables to be the same:
SELECT sno, sname
FROM S
UNION
SELECT pno, pname
FROM P;

I Union removes duplicate rows from the result.
I If you want all the rows, including duplicates, use UNION

ALL.

Set Operations
I INTERSECT takes the intersection of the rows from two

tables and requires the number of columns in the tables to
be the same:

(SELECT sno, sname
FROM S
UNION
SELECT pno, pname
FROM P) INTERSECT
(SELECT sno, sname
FROM S
WHERE status > 10);

I INTERSECT removes duplicate rows from the result.
I If you want all the rows, including duplicates, use

INTERSECT ALL.
I Warning: MySQL (version 4.1 and above) does not

implement INTERSECT.

Set Operations
I The EXCEPT operation returns the first table minus any

overlap with the second table and requires the number of
columns in the tables to be the same:

(SELECT sno, sname
FROM S
UNION
SELECT pno, pname
FROM P) EXCEPT
(SELECT sno, sname
FROM S
WHERE status > 10);

I EXCEPT removes duplicate rows from the result.
I If you want all the rows, including duplicates, use EXCEPT

ALL.
I Warning: MySQL (version 4.1 and above) does not

implement EXCEPT.

Embedded SQL

I Embedded SQL is defined to allow access to databases
from general purpose programming languages (Perl, C,
Ada, etc.) which are called host languages.

I The SQL statements in the host language are enclosed in
an EXEC SQL pair.

I Inside an SQL statement variable names of the host
language are attached the SQL variables.

I The program in the host language that uses embedded
SQL must also contain an SQLSTATE variable, that is how
the result is returned after every SQL statement.

Embedded SQL

Example

I Assume the ’number’ host variable contains a supplier
number whose name and status we want to fetch into ’n’
and ’st’.

I EXEC SQL
SELECT sname, status

INTO :n, :st
FROM S
WHERE sno = :number ;

Summary

I SQL basic ideas have been discussed.
I Creating, Populating and Modifying tables.
I Querying.
I Embedding SQL into host languages.

	SQL
	Table Creation
	Populating and Modifying Tables
	Querying

