
Information Systems
Transaction Management

Nikolaj Popov

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

popov@risc.uni-linz.ac.at

Outline

Recovery

Concurrency

Transactions

I Transaction: Logical unit of work.
I Begins with the execution of a BEGIN TRANSACTION

operation.
I Ends with the execution of a COMMIT or ROLLBACK

operation.

Transactions

Example
BEGIN TRANSACTION

UPDATE ACC 123 { BAL := BAL - $100 };
IF error THEN GO TO UNDO ; END IF ;

UPDATE ACC 456 { BAL := BAL + $100 };
IF error THEN GO TO UNDO ; END IF ;

COMMIT ; /* successful termination */
GO TO FINISH ;

UNDO :
ROLLBACK ; /* unsuccessful termination */

FINISH :
RETURN ;

Transactions

I The purpose of the transaction in the example: To transfer
money from one account to another.

I Single atomic operation “transfer money from one account
to another”.

I Two separate updates of the database.
I The database is in incorrect state in BETWEEN the

updates: $100 is temporarily missing.
I Transaction: sequence of operations that transforms a

correct state of the database into another correct state.
I In intermediate states correctness is not guaranteed.

Transactions

I It must not be allowed one of the updates to be executed
and the other not.

I However, things may go wrong at the worst possible
moment: system crash between two updates, arithmetic
overflow on the second update, etc.

I A special component of DBMS guarantees that in case of
such failures the updates already performed will be
undone.

I The component is called the transaction manager.
I It guarantees that the transaction is either completed or

totally canceled.
I Nested transactions are not allowed. (To be revisited later.)

COMMIT and ROLLBACK

I COMMIT and ROLLBACK: Operations that are key to the
way how the transaction manager works.

I COMMIT signals successful end-of-transaction:
I A logical unit of work has been successfully completed.
I The database is in a correct state again.
I All the updates made by the unit must be “committed”.

I ROLLBACK signals unsuccessful end-of-transaction:
I Something went wrong.
I The database might be in an incorrect state.
I All the updates made by the unit must be “rolled back”.

Recovery Log

How an update can be undone?
I The system maintains a log.
I The log records the values of updated objects before and

after each update.
I When it becomes necessary to undo a particular update,

the system can use the corresponding log record to restore
the updated object to its previous value.

Transaction Recovery

I COMMIT establishes a commit point.
I The first BEGIN TRANSACTION statement establishes the

first commit point.
I The database is supposed to be in a correct state at any

commit point.

Transaction Recovery

When a commit point is established:
I All database updates made by the executing program

since the previous commit point are committed.
I Committed updates become permanent: They are

recorded in the database and can not be undone.
I Prior to the commit point, all such updates are tentative:

they might subsequently be undone.
I The log must be physically written before COMMIT

processing can complete.
I All tuple locks are released.

Transaction Recovery

Few implementation issues:
I Database updates are kept in buffers in main memory and

not physically written to disk until the transaction commits.
No need to undo disk updates.

I Database updates are physically written to disk after
committing. If the system subsequently crashes, there will
be no need to redo any disk updates.

However, in practice these might not hold in general.

Transaction Recovery

More precise write-ahead log behavior:
I The log record for a given database update must be

physically written to the log before that update is physically
written to the database.

I All other log records for a given transaction must be
physically written to the log before the COMMIT log record
for that transaction is physically written to the log.

I COMMIT processing for a given transaction must not
complete until the COMMIT log record for that transaction
is physically written to the log.

ACID Properties

Transaction possess ACID properties: atomicity, correctness,
isolation, durability.

I Atomicity: Transaction are atomic (all or nothing).
I Correctness: Transaction transform correct states into

correct states, without necessarily preserving correctness
at all intermediate points.

I Isolation: Transactions are isolated from one another. Even
if many transactions are running concurrently, any given
transaction’s updates are hidden from the rest until that
transaction commits.

I Durability: Once a transaction commits, its updates persist
in the database.

Failure Categories

I Local failures affect only the transaction in which the failure
occurred.

I Global failures affect all the transactions in progress.
I Two categories of global failures:

I System failures (e.g., power outage): Affect all transactions
in progress but do not physically damage the database.

I Media failures: (e.g., head crash on the disk): Cause
damage to the database and affect all the transactions
currently using the damaged portion of the database.

System Recovery

I System failure causes the contents of the main memory to
be lost.

I The precise state of the transaction active at the moment
of failure is no longer known.

I Such a transaction must be undone when the system
restarts.

I It might be necessary to redo some of the transactions that
did successfully complete prior to the crash but did not
manage to get their updates transferred from the main
memory to the physical database.

System Recovery

I How does the system know at restart time which
transactions to undo and which redo?

I Taking checkpoints at certain prescribed intervals:
I Forcing the contents of the main memory buffers out to the

physical database.
I Forcing the special checkpoint record out to the physical

log.
I The checkpoint record contains the list of all active

transactions at the checkpoint time.

System Recovery

I Transactions of types T3 and T5 must be undone.
I Transactions of types T2 and T4 must be redone.
I T1 does not enter the restart process.

Media Recovery

I Recovery from media failure.
I First reload or restore the database from a backup copy.
I Then use the log to redo all transactions since the backup

copy was taken.
I Nothing to be undone: Transaction been in progress at the

time of failure are lost anyway.

Concurrency

I DBMSs typically allow many transactions to access the
same database at the same time.

I Ensure that concurrent transactions do not interfere with
each other.

Three Concurrency Problems

I The lost update problem.
I The uncommitted dependency problem.
I The inconsistent analysis problem.

The Lost Update Problem

Transaction A Time Transaction B
RETRIEVE t t1 —
— t2 RETRIEVE t
UPDATE t t3 —
— t4 UPDATE t

Transaction A loses an update at time t4, because B overwrites
it without even looking at it.

The Uncommitted Dependency Problem

Transaction A Time Transaction B
— t1 UPDATE t
RETRIEVE t t2 —
— t3 ROLLBACK

I Transaction A becomes dependent on an uncommitted
change at time t2.

I A is operating a false assumption that tuple t has the value
seen at time t2.

I In fact t has whatever value it had prior to time t1.

The Uncommitted Dependency Problem

Transaction A Time Transaction B
— t1 UPDATE t
UPDATE t t2 —
— t3 ROLLBACK

I Transaction A updates an uncommitted change at time t2,
and loses that update at time t3.

I Rollback at time t3 causes tuple t to be restored to its value
prior to time t1.

The Inconsistent Analysis Problem

I Transactions A and B operate on account (ACC) tuples.
I Transaction A is running account balances, transaction B is

transferring an amount 10 from account 3 to account 1.
I Amounts on the accounts at the beginning:

I ACC1: 40
I ACC2: 50
I ACC3: 30

The Inconsistent Analysis Problem

ACC1: 40, ACC2: 50, ACC3: 30

Transaction A Time Transaction B
RETRIEVE ACC1 : t1 —
sum=40
RETRIEVE ACC2 : t2 —
sum=90
— t3 RETRIEVE ACC3
— t4 UPDATE ACC3 : 30 7→ 20
— t5 RETRIEVE ACC1
— t6 UPDATE ACC1 : 40 7→ 50
— t7 COMMIT
RETRIEVE ACC3 : t8 —
sum=110, not 120

Locking

I The three concurrency problems can be solved by a
concurrency control mechanism called locking.

I Idea behind locking:
I A transaction needs an assurance that some object it is

interested in will not change at certain moment.
I To guarantee this, the transaction acquires a lock on that

object.
I Locking an object prevents other transactions from

changing it.

Locking

I Two kinds of locks: exclusive (X) and shared (S).
I If a transaction A holds an X lock on tuple t, then a request

from some other transaction B for a lock of either type on t
cannot be immediately granted.

I If transaction A holds an S lock on tuple t, then:
I A request from a transaction B for an X lock on t cannot be

immediately granted.
I A request from a transaction B for an S lock on t will be

immediately granted.

Locking

X S —
X N N Y
S N Y Y
— Y Y Y

Compatibility matrix for lock types X and S.

Locking Protocol
Strict two-phase locking:

1. A transaction that wishes to retrieve a tuple first acquires
an S lock on that tuple.

2. A transaction that wishes to update a tuple first acquires an
X lock (or promotes an existing S lock to an X lock) on that
tuple.

3. If a lock requested by transaction B cannot be immediately
granted because of lock conflict with transaction A, B goes
into a wait state.

4. B will acquire the lock requested after A’s lock is released
(and there are no other transactions waiting in the queue
before B).

5. The locks are released at end-of-transaction (COMMIT or
ROLLBACK).

Makes use of X and S locks to guarantee that the concurrency
problems do not occur.

The Lost Update Problem Revisited

Transaction A Time Transaction B
RETRIEVE t t1 —
(acquire S lock on t)
— t2 RETRIEVE t
— (acquire S lock on t)
UPDATE t t3 —
(request X lock on t)
wait t4 UPDATE t
wait (request X lock on t)
wait wait

I No update is lost, but deadlock occurs at time t4.
I We reduced the original problem to a new problem:

deadlock.

The Uncommitted Dependency Problem Revisited

Transaction A Time Transaction B
— t1 UPDATE t
— (acquire X lock on t)
RETRIEVE t t2 —
(request S lock on t)
wait t3 COMMIT / ROLLBACK
wait (release X lock on t)
resume: RETRIEVE t t4
(acquire S lock on t)

I Transaction A is prevented from seeing an uncommitted
change at time t2.

I We have solved the original problem.

The Uncommitted Dependency Problem Revisited

Transaction A Time Transaction B
— t1 UPDATE t
— (acquire X lock on t)
UPDATE t t2 —
(request X lock on t) –
wait t3 COMMIT / ROLLBACK
wait (release X lock on t)
resume: UPDATE t
(acquire X lock on t)

I Transaction A is prevented from updating an uncommitted
change at time t2.

I We have solved the original problem.

The Inconsistent Analysis Problem
Transaction A Time Transaction B
RETRIEVE ACC1 : t1 —
(acquire S lock on ACC1) —
sum=40 —
RETRIEVE ACC2 : t2 —
(acquire S lock on ACC2) —
sum=90 —
— t3 RETRIEVE ACC3
— (acquire S lock on ACC3)
— t4 UPDATE ACC3
— (acquire X lock on ACC3)
— 30 7→ 20
— t5 RETRIEVE ACC1
— (acquire S lock on ACC1)
— t6 UPDATE ACC1
— (request X lock on ACC1)
— wait
RETRIEVE ACC3 t7 wait
(request S lock on ACC3) wait
wait wait

The Inconsistent Analysis Problem

I Inconsistent analysis is prevented, but deadlock occurs at
time t7.

I We reduced the original problem to a new problem:
deadlock.

Deadlock

I Deadlock is a situation in which two or more transactions
are in a simultaneous wait state.

I Each of these transactions is waiting for one of the others
to release a lock before it can proceed

I An example of deadlock:

Transaction A Time Transaction B
LOCK r1 EXCLUSIVE t1 —
— t2 LOCK r2 EXCLUSIVE
LOCK r2 EXCLUSIVE t3 —
wait t4 LOCK r1 EXCLUSIVE
wait wait

Deadlock Resolution

I To predict and avoid deadlocks can be difficult and time
consuming (finding circles in graphs).

I In practice if a transaction does not make any progress
within a given time limit it is assumed to be deadlocked.

I If there are presumably deadlocked transaction, the
transaction manager chooses a “victim” and requests an
implicit rollback on it.

I When this happens all the locks the “victim” held get
released.

Serialization

I A (possibly interleaved) execution of a set of transactions
is called schedule.

I Serial execution: transactions are run one at a time in
some sequence.

I A schedule of a set of transactions, which are individually
correct by assumption, is called serializable if and only if it
produces the same result as some serial execution of the
same set of transactions; and this does not depend on the
(a priori correct) initial state we start from.

I Serializable schedules transfer the database from a correct
state into a correct state.

I Serializability can be difficult to test for an arbitrary
schedule.

Serialization

I The two-phase locking protocol requires that
I a transaction must acquire a lock (of the appropriate kind)

on a tuple before it operates with it
I after releasing a lock, the transaction must never acquire a

lock again.
I In other terms, the transaction must acquire locks and it is

expected to separate the lock acquisition and the lock
release phases.

Theorem (Two-Phase Locking Theorem)
If all transactions obey the two-phase locking protocol, then all
possible interleaved schedules are serializable.

Summary

I Transactions are initiated by BEGIN TRANSACTION and
are terminated by either COMMIT (successful termination)
or ROLLBACK (unsuccessful termination).

I COMMIT establishes a commit point (updates are
recorded in the database);

I ROLLBACK rolls the database back to the previous commit
point (updates are undone).

I If a transaction does not reach its planned termination, the
system automatically executes a ROLLBACK for it
(transaction recovery).

Summary

I In order to be able to undo and redo updates, the system
maintains a recovery log.

I The log records for a given transaction must be written to
the physical log before COMMIT processing for that
transaction can complete.

I If a system crash occurs, the system must (a) redo all work
done by transactions completed successfully prior to the
crash and (b) undo all work done by transactions that
started but did not complete prior to the crash.

I This system recovery activity is carried out as part of the
system’s restart procedure.

Summary

I Three problems can arise in an interleaved execution of
concurrent transactions if no control is in place: the lost
update problem, the uncommitted dependency problem,
and the inconsistent analysis problem.

I The most widespread technique for dealing with such
problems is locking.

	Recovery
	Concurrency

