
Practical Integer Division with Karatsuba Complexity �Tudor JebeleanResearch Institute for Symbolic ComputationA4232 Schlo� Hagenberg, Austriatudor@risc.uni-linz.ac.athttp://www.risc.uni-linz.ac.atAbstractCombining Karatsuba multiplication with a technique devel-oped by Krandick for computing the high-order part of thequotient, we obtain an integer division algorithm which isonly two times slower, on average, than Karatsuba multipli-cation. The main idea is to delay part of the dividend updateuntil this can be done by multiplication between large bal-anced operands. An implementation under saclib is fasterthan classical multiplication at 40 words, and becomes twotimes faster at 250 words.IntroductionThe Karatsuba method for long integer multiplication [4] isprobably the only asymptotically fast algorithm of practicaluse for integer arithmetic. Depending on the implementa-tion, the break-even point against the classical algorithm istypically between 5 and 50 words.However, integer division with remainder does not ben-e�t from this algorithm. Indeed, although theoretically di-vision has the same time complexity as multiplication (seee.g. [5], p. 275), a division algorithm designed along thelines as explained by Knuth will be about 30 times slowerthan multiplication (see analysis in [6]). By making use ofthe Krandick-Johnson multiplication [8, 7] which computesonly the high-order digits, and of a squaring routine whichis twice as fast as general multiplication, one may hope toreduce the gap to 15 times. If Karatsuba multiplication isused, then the break-even point against classical divisionwill be above n = 1000 words. (If the Karatsuba thresh-old is t, then n can be obtained from the equation n2 =15cnlog 3= log 2, where c is found from t2 = ctlog 3= log 2. Forinstance, if t = 10, then n � 7000.) We present a techniquewhich combines Krandick's division algorithm for computingthe high-order part of the quotient [6] with Karatsuba multi-plication, leading to a division algorithm which is about twotimes slower than Karatsuba multiplication. The main ideaof the method is to delay the update of part of the dividend�Supported by Austrian Forschungsf�orderungsfonds (FWF),project P10002-PHY.c1997 ACM. To appear in the ISSAC 97, July 21-23, 1997Maui, Hawaii, USA.

until this can be done by multiplication of large balancedoperands. The update can be delayed because Krandick'salgorithm needs only 3 word-updates below the current po-sition in the dividend.The new algorithm does not have Karatsuba complexityin the traditional sense, because in the worse case Krandick'salgorithm fails to produce the right quotient digits, whichmeans one will have to resort to classical division { havingagain quadratic time complexity.However, the probability of failure is very small (quotient-length divided by 2word�length), hence the average runningtime is practically not a�ected. Experiments using thesaclib computer algebra system [1] reveal that the new al-gorithm becomes faster than the classical method at about40 words, and twice as fast at 250 words (these values mayvary under di�erent implementations).1 The AlgorithmWe consider the division with remainder of positive integers:given a dividend A and a divisor B, �nd the positive quotientQ and remainder R such that A = BQ+R and R < Q:The classical division algorithm (see [5] p. 237) can beseen as a series of successive updates of the dividend A bysubtracting the divisor B multiplied by the current digit ofthe quotient Q. (This quotient digit is computed before eachupdate using the 3 most signi�cant digits of the current Aand the 2 most signi�cant digits of B.) Each update is right{shifted one position w.r.t. the previous one. This process isrepresented pictorially by the parallelogram in Fig. 1. The�nal value of A will be the remainder R.Let us split the quotient Q into its high-order part QH oflength qH and its low-order part QL of length qL such thatqL � qH � qL + 1, and let us also split the divisor B intoits high order part BH of length bH and its low-order partBL such that qH + 3 � bH (if B is too short to allow thisthen one only splits the quotient until the above becomespossible).In the classical division algorithm, the computation ofthe high-order part QH of the quotient requires the up-dates corresponding to the upper half of the parallelogramin Fig. 1 (areas 1 and 2). However, Krandick [6] proves thatin most cases it is enough to update only 3 words belowthe lowest digit of A needed for the lowest quotient digit tobe computed (i.e. down to the vertical line crossing area1). Doing so, the probability that a quotient digit will bewrong is less than qH=2w, where w is the bit-length of theword (in our implementation w = 29). Moreover, such a1



Q

B

A

1 2

3 4

Q

Q

B B

H

L

H L

RFigure 1: Organization of the dividend updates.failure is easy to detect by inspecting the most signi�cantdigit of the updated value of A at each step, and by testing asupplementary condition after the computation of QH (see[6]).We make use of Krandick's argument in asserting thatthe digits of QH will be computed correctly (with at leastthe same high probability) if we perform only the updatesin area 1. In order to detect possible failures, we keep thecheck on the most signi�cant updated digit of A at each step.However we do not need to use Krandick's condition afterQH is computed. Instead of this, we check the conditionR < B after the whole division is �nished. As it will be seenin the sequel, the overall algorithm insures that the resultingQ;R satisfy A = BQ+R, hence the former condition provesthe correctness of the result.Now let us split the updates of the dividend A into 4parts as shown in Fig. 1 by the plain lines, (the dotted linerepresents 3 words into areas 1 and 3) and let us performthem in the order indicated by the numbers:� Part 1 is split again into 4 parts by the same technique,and its e�ect will be to compute a Q0H and to updateA to: A1 = A� BHQ0H�bL+qL;where � is the radix (in our implementation � = 229).� Part 2 is performed by Karatsuba multiplication andupdates A1 to: A2 = A1 �BLQ0H�qL:� Part 3 is split again into 4 parts recursively and itse�ect is to compute a Q0L and to update:A3 = A2 �BHQ0L�bL:� Part 4 is performed by Karatsuba multiplication andperforms the update:A4 = A3 �BLQ0L:When bH is below a constant threshold h , then the parts1 and 3 are not split anymore, but the computation of thecorresponding quotient digits and the updates are performedusing the modi�ed Krandick algorithm as explained above,which requires that 3 word-updates are done below the digitswhich are used for the computation of the next quotient

digit. (This is insured by the condition qL � qH � bH � 3.)The constant threshold h has to be such that, after splitting,the new bL is above the Karatsuba threshold t, hence h =2t+ 3. (In our experiments, the Karatsuba threshold is 15,hence is h = 33.)Obviously: A4 = A � Q0B; where Q0 = Q0H�qL + Q0H .Furthermore, if 0 � A4 < B, then Q0 = Q and A4 = R dueto the uniqueness of the integer quotient and remainder.2 Complexity Analysis and ExperimentsLet us assume the Karatsuba threshold is t and let us con-sider n = 2kt for some positive integer k. Then the numberof digit products when multiplying two n-word numbers byKaratsuba algorithm is:M(n) =M(2kt) = 3M(2k�1t) = : : : = 3kM(t) = 3kt2:Let us compute the number D(n) of digit products re-quired by the new division algorithm in order to performthe updates when the length of the quotient Q is n and thelength of the divisor B is n+ 3:D(n) = D(2kt) = 2D(2k�1t) + 2M(2k�1t)and by induction:D(n) = 2kD(t) + kXi=1 2iM(2k�it);hence, using M(n) = 3kt2 and D(t) = t(t+ 3):D(n) = 2M(t)3k � 2k3� 2 + 2kD(t) = 2M(n)� n(t� 3):This allows us to conclude that division by the new algo-rithm is roughly two times as expensive as multiplication ofthe (balanced length) quotient and divisor by the Karatsubaalgorithm.This assertion is supported by the empirical facts: asshown in Table 1, at divisor lengths between 40 and 100words, the ratio division-time per multiplication-time variesbetween 1.68 and 1.90. For longer operands, the ratio keepssimilar values.We implemented the new algorithm under the computeralgebra system saclib [1], using also a modi�ed version ofthe implementation of Krandick high-order division from [6].The timings presented in Table 1 are obtained with gnu op-timizing C compiler on a Sequent Symmetry architecture.The speed-up of the new algorithm over the classical onestarts to be visible at 40 words (the threshold is at 33 words),and at 250 words the new algorithm is 2 times faster (seeFig.2).Conclusions and Further WorkCombining Karatsuba multiplication with high-order divi-sion brings the asymptotically fast algorithm into the reachof practical application. Although the theoretical worse-casecomplexity remains quadratic, this has practically no inu-ence over the average time complexity, which is (almost)Karatsuba-like. For instance, if the length of the computer-word is 229, then incidence of divisions needing quadratictime is under 10�5 for operands up to 1000 words.Certainly this technique can be applied to the right-to-left exact division algorithm of [3], where it is even easier2



Dividend Absolute timings and ratios/ divisor New Karatsuba Classicallength division multiplication division80/40 59 35 1.68 64 .92100/50 87 53 1.64 97 .89120/60 118 62 1.90 140 .84140/70 147 84 1.75 189 .77160/80 188 108 1.74 245 .76180/90 233 133 1.75 308 .75200/100 285 161 1.77 381 .74300/150 521 286 1.82 847 .61400/200 887 491 1.80 1495 .59500/250 1191 629 1.89 2331 .51600/300 1618 868 1.86 3349 .48700/350 2143 1152 1.86 4553 .47800/400 2745 1469 1.86 5942 .46Table 1: Timings in milliseconds.

0.40.60.811.21.41.61.822.2
0 50 100 150 200 250 300 350 400Length of divisor in wordsvs. Karatsuba multiplication2222222 2 2 2 2 2 2

vs. classical division3333333 3 3 3 3 3 3
Figure 2: Speedup of the new algorithm over the classicaldivision and the Karatsuba multiplication.

since the carries propagate in the opposite direction. More-over, the technique is applicable to the bidirectional divisionof [6], which will probably make exact division about 4 timesfaster than the hereby presented algorithm.A similar strategy of delaying operations until Karatsubamultiplication can be used should be investigated for GCDcomputation, especially for the recent Jebelean-Weber algo-rithm [2, 9] which is performed least-signi�cant digits �rst.And, �nally, by using the parallel version of Karatsubamultiplication, the algorithms above may get an additionalspeed-up on a parallel architecture.Acknowledgements. I express special thanks to WernerKrandick for the excellent work in designing, implementing,and describing the high-order division, which constitutes thestarting point for this work.References[1] Buchberger, B., Collins, G. E., Encarnacion,M. J., Hong, H., Johnson, J. R., Krandick, W.,Loos, R., Mandache, A. M., Neubacher, A., andVielhaber, H. SACLIB 1.1 User's Guide. Tech. Rep.93{19, RISC{Linz, 1993.[2] Jebelean, T. A generalization of the binary GCD algo-rithm. In ISSAC'93: International Symposium on Sym-bolic and Algebraic Computation (Kiev, Ukraine, July1993), M. Bronstein, Ed., ACM Press, pp. 111{116.[3] Jebelean, T. An algorithm for exact division. Journalof Symbolic Computation 15, 2 (February 1993), 169{180.[4] Karatsuba, A., and Ofman, Y. Multiplication of mul-tidigit numbers on automata. Sov. Phys. Dokl. 7 (1962),595{596.[5] Knuth, D. E. The art of computer programming, 2 ed.,vol. 2. Addison-Wesley, 1981.[6] Krandick, W., and Jebelean, T. Bidirectional exactinteger division. Journal of Symbolic Computation 21(1996), 441{455.[7] Krandick, W., and Johnson, J. R. E�cient multi-precision oating point multiplication with exact round-ing. Tech. Rep. 93-76, RISC-Linz, RISC-Linz, JohannesKepler University, A-4040 Linz, Austria, 1993. presentedat the Rhine Workshop on Computer Algebra, Karl-sruhe, Germany, 1994.[8] Krandick, W., and Johnson, J. R. E�cient multi-precision oating point multiplication with optimal di-rectional rounding. In Proceedings of the 11th IEEESymposium on Computer Arithmetic (P.O.Box 3041, LosAlamitos, CA 90720-126, Phone: 714 821-838, 1993),E. Swartzlander, Jr., M. J. Irwin, and G. Jullien, Eds.,IEEE, IEEE Computer Society Press, pp. 228{233.[9] Weber, K. The accelerated integer GCD algorithm.ACM Trans. on Math. Software 21, 1 (March 1995), 111{122.3


