Practical Integer Division with Karatsuba Complexity *

Tudor Jebelean

Research Institute for Symbolic Computation
A4232 Schlofi Hagenberg, Austria

tudor@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at

Abstract

Combining Karatsuba multiplication with a technique devel-
oped by Krandick for computing the high-order part of the
quotient, we obtain an integer division algorithm which is
only two times slower, on average, than Karatsuba multipli-
cation. The main idea is to delay part of the dividend update
until this can be done by multiplication between large bal-
anced operands. An implementation under saclib is faster
than classical multiplication at 40 words, and becomes two
times faster at 250 words.

Introduction

The Karatsuba method for long integer multiplication [4] is
probably the only asymptotically fast algorithm of practical
use for integer arithmetic. Depending on the implementa-
tion, the break-even point against the classical algorithm is
typically between 5 and 50 words.

However, integer division with remainder does not ben-
efit from this algorithm. TIndeed, although theoretically di-
vision has the same time complexity as multiplication (see
e.g. [5], p- 275), a division algorithm designed along the
lines as explained by Knuth will be about 30 times slower
than multiplication (see analysis in [6]). By making use of
the Krandick-Johnson multiplication [8, 7] which computes
only the high-order digits, and of a squaring routine which
is twice as fast as general multiplication, one may hope to
reduce the gap to 15 times. [If Karatsuba multiplication is
used, then the break-even point against classical division
will be above n = 1000 words. (If the Karatsuba thresh-
old is t, then n can be obtained from the equation n? =
15en'°8 /1982 here ¢ is found from £ = c#°83/ 1082 For
instance, if £ = 10, then n & 7000.) We present a technique
which combines Krandick’s division algorithm for computing
the high-order part of the quotient [6] with Karatsuba multi-
plication, leading to a division algorithm which is about two
times slower than Karatsuba multiplication. The main idea
of the method is to delay the update of part of the dividend

*Supported by Austrian Forschungsforderungsfonds (FWF),
project P10002-PHY.

©1997 ACM. To appear in the ISSAC 97, July 21-23, 1997
Maui, Hawaii, USA.

until this can be done by multiplication of large balanced
operands. The update can be delayed because Krandick’s
algorithm needs only 3 word-updates below the current po-
sition in the dividend.

The new algorithm does not have Karatsuba complexity
in the traditional sense, because in the worse case Krandick’s
algorithm fails to produce the right quotient digits, which
means one will have to resort to classical division having
again quadratic time complexity.

However, the probability of failure is very small (quotient-
length divided by 27°T71*"8") hence the average rumning
time is practically not affected. FExperiments using the
saclib computer algebra system [1] reveal that the new al-
gorithm becomes faster than the classical method at about
40 words, and twice as fast at 250 words (these values may
vary under different implementations).

1 The Algorithm

We consider the division with remainder of positive integers:
given a dividend A and a divisor B, find the positive quotient,
@ and remainder R such that A = BQ + R and R < Q.

The classical division algorithm (see [5] p. 237) can be
seen as a series of successive updates of the dividend A by
subtracting the divisor B multiplied by the current digit of
the quotient Q. (This quotient digit is computed before each
update using the 3 most significant. digits of the current A
and the 2 most significant digits of B.) Fach update is right
shifted one position w.r.t. the previous one. This process is
represented pictorially by the parallelogram in Fig. 1. The
final value of A will be the remainder R.

T.et us split the quotient @ into its high-order part Qg of
length gr and its low-order part @7 of length g5, such that
qr. < gr < g7 + 1, and let us also spht the divisor B into
its high order part By of length by and its low-order part
B;, such that gz + 3 < by (if B is too short to allow this
then one only splits the quotient until the above becomes
possible).

In the classical division algorithm, the computation of
the high-order part Qm of the quotient requires the up-
dates corresponding to the upper half of the parallelogram
in Fig. 1 (areas 1 and 2). However, Krandick [6] proves that
in most cases it is enough to update only 3 words below
the lowest, digit of A needed for the lowest quotient digit to
be computed (i.e. down to the vertical line crossing area
1). Doing so, the probability that a quotient digit will be
wrong is less than gm /2", where w is the bit-length of the
word (in our implementation w = 29). Moreover, such a

B
B B
H L
N
N)
Q, LN
N
N
N
Q B N
N
N
\\
Q 3 N 4
L AN
AN
AN
AN
R

Figure 1: Organization of the dividend updates.

failure is easy to detect by inspecting the most significant
digit of the updated value of A at each step, and by testing a
supplementary condition after the computation of Qr (see
6]).

We make use of Krandick’s argument in asserting that
the digits of @x will be computed correctly (with at least
the same high probability) if we perform only the updates
in area 1. In order to detect possible failures, we keep the
check on the most significant updated digit of A at each step.
However we do not need to use Krandick’s condition after
Qp i1s computed. Instead of this, we check the condition
R < B after the whole division 1s finished. As it will be seen
in the sequel, the overall algorithm insures that the resulting
Q, Rsatisfy A = BQ+ R, hence the former condition proves
the correctness of the result.

Now let us split the updates of the dividend A into 4
parts as shown in Fig. 1 by the plain lines, (the dotted line
represents 3 words into areas 1 and 3) and let us perform
them in the order indicated by the numbers:

e Part 11s split again into 4 parts by the same technique,
and its effect will be to compute a Q% and to update
A to:

Ay = A— ByQly g+

where 8 is the radix (in our implementation 8 = 2°7).

e Part 2 is performed by Karatsuba multiplication and
updates A; to:

As = Ay — BrLQW B

e Part 3 is split again into 4 parts recursively and its
effect is to compute a Q and to update:

Az = Ay — BrQhp®.

e Part 4 is performed by Karatsuba multiplication and
performs the update:

Ay = As — BrLQ).

When by is below a constant threshold h , then the parts
1 and 3 are not split anymore, but the computation of the
corresponding quotient, digits and the updates are performed
using the modified Krandick algorithm as explained above,
which requires that 3 word-updates are done below the digits
which are used for the computation of the next quotient

digit. (This is insured by the condition g7, < g < by — 3.)
The constant threshold h has to be such that, after splitting,
the new by, is above the Karatsuba threshold ¢, hence h =
2t 4+ 3. (In our experiments, the Karatsuba threshold is 15,
hence is h = 33.)

Obviously: Ay = A — Q'B, where Q' = Q%89 + Q%.
Furthermore, if 0 < Ay < B, then Q' = Q and Ay = R due

to the uniqueness of the integer quotient and remainder.

2 Complexity Analysis and Experiments

T.et us assume the Karatsuba threshold is ¢ and let us con-
sider n = 2%t for some positive integer k. Then the number
of digit products when multiplying two n-word numbers by
Karatsuba algorithm is:

M(n) = M(2) =3M(2" 1) = .. =3" M (1) = 3*F.

T.et us compute the number D(n) of digit products re-
quired by the new division algorithm in order to perform
the updates when the length of the quotient @ 1s n and the
length of the divisor B is n + 3:

D(n) = D) = 2D(27"1) + 2M (2" '1)

and by induction:

D(n) =2"D(t) + Z?M(z’“*%),

i=1
hence, using M(n) = 3%+% and D(t) =t(t + 3):

q;k E

3 2 9" D) = 2M(n) — n(t — 3).

D(n) = 2M (1) —

This allows us to conclude that division by the new algo-
rithm is roughly two times as expensive as multiplication of
the (balanced length) quotient and divisor by the Karatsuba
algorithm.

This assertion is supported by the empirical facts: as
shown in Table 1, at divisor lengths between 40 and 100
words, the ratio division-time per multiplication-time varies
between 1.68 and 1.90. For longer operands, the ratio keeps
similar values.

We implemented the new algorithm under the computer
algebra system saclib [1], using also a modified version of
the implementation of Krandick high-order division from [6].
The timings presented in Table 1 are obtained with gnu op-
timizing C compiler on a Sequent Symmetry architecture.

The speed-up of the new algorithm over the classical one
starts to be visible at 40 words (the threshold is at 33 words),
and at 250 words the new algorithm is 2 times faster (see

Fig.2).

Conclusions and Further Work

Combining Karatsuba multiplication with high-order divi-
sion brings the asymptotically fast algorithm into the reach
of practical application. Although the theoretical worse-case
complexity remains quadratic, this has practically no influ-
ence over the average time complexity, which is (almost)
Karatsuba-like. For instance, if the length of the computer-
word is 22, then incidence of divisions needing quadratic
time is under 1077 for operands up to 1000 words.
Certainly this technique can be applied to the right-to-
left exact division algorithm of [3], where it is even easier

Dividend Absolute timings and ratios
/ divisor New Karatsuba Classical
length division | multiplication division
80/40 59 35 1.68 64 .92
100/50 87 53 1.64 97 .89
120/60 118 62 1.90 140 .84
140/70 147 84 1.75 189 .77
160/80 188 108 1.74 245 .76
180/90 233 133 1.75 308 .75
200/100 285 161 1.77 | 381 .74
300/150 521 286 1.82 847 .61
400/200 887 491 1.80 | 1495 .59
500/250 1191 629 1.89 | 2331 .51
600/300 1618 868 1.86 | 3349 48
700/350 2143 | 1152 1.86 | 4553 .47
800/400 2745 | 1469 1.86 | 5942 46

Table 1: Timings in milliseconds.

2.2

vs. classical division

1.8 -

1.4

1.2

0.8 - i

vs. Karatsuba multiplication

0.4 | | | | | | |
0 50 100 150 200 250 300 350 400

Length of divisor in words

Figure 2: Speedup of the new algorithm over the classical
division and the Karatsuba multiplication.

since the carries propagate in the opposite direction. More-
over, the technique is applicable to the bidirectional division
of [6], which will probably make exact division about 4 times
faster than the hereby presented algorithm.

A similar strategy of delaying operations until Karatsuba
multiplication can be used should be investigated for GCD
computation, especially for the recent Jebelean-Weber algo-
rithm [2, 9] which is performed least-significant digits first.

And, finally, by using the parallel version of Karatsuba
multiplication, the algorithms above may get an additional
speed-up on a parallel architecture.

Acknowledgements. T express special thanks to Werner
Krandick for the excellent work in designing, implementing,
and describing the high-order division, which constitutes the
starting point for this work.

References

[1] BucHBERGER, B., Cornins, G. FE., FNCARNACION,
M. J., Honag, H., Joanson, J. R., KrRanNDICK, W,
T.oos, R., ManpacHkE, A. M., NEUBACHER, A., AND
VIELHABER, H. SACILIB 1.1 User’s Guide. Tech. Rep.
93 19, RISC T.inz, 1993.

[2] JEBELEAN, T. A generalization of the binary GCT algo-
rithm. In ISSAC’93: International Symposium on Sym-
bolic and Algebraic Computation (Kiev, Ukraine, July
1993), M. Bronstein, Fd., ACM Press, pp. 111 116.

[3] JEBRLEAN, T. An algorithm for exact division. Journal
of Symbolic Computation 15, 2 (February 1993), 169
180.

[4] KARATSUBA, A., AND OFMAN, Y. Multiplication of mul-
tidigit numbers on automata. Sov. Phys. Dokl. 7 (1962),
595 596.

[5] KnuTH, D. E. The art of computer programming, 2 ed.,
vol. 2. Addison-Wesley, 1981.

[6] KranDIicK, W., AND JEBELEAN, T. Bidirectional exact

integer division. Journal of Symbolic Computation 21
(1996), 441 455.

[7] Krannick, W., anp Jounson, J. R. Efficient multi-
precision floating point multiplication with exact round-
ing. Tech. Rep. 93-76, RISC-T.inz, RISC-T.inz, Johannes
Kepler University, A-4040 Linz, Austria, 1993. presented
at the Rhine Workshop on Computer Algebra, Karl-
sruhe, Germany, 1994.

[8] Krannick, W., anp Jounson, J. R. Efficient multi-
precision floating point. multiplication with optimal di-
rectional rounding. In Proceedings of the 11th TFEFE
Symposium on Computer Arithmetic (P.O.Box 3041, T.os
Alamitos, CA 90720-126, Phone: 714 821-838, 1993),
E. Swartzlander, Jr., M. J. Trwin, and G. Jullien, Eds.,
IEEE, TEEE Computer Society Press, pp. 228 233.

[9] WEBER, K. The accelerated integer GCT) algorithm.
ACM Trans. on Math. Software 21,1 (March 1995), 111
122.

