
Exat Division with Karatsuba Complexityextended abstrat �Tudor JebeleanResearh Institute for Symboli ComputationA4232 Shlo� Hagenberg, Austriatudor�ris.uni-linz.a.atAbstratWhen it is known in advane that the remainder is null, division of integers is alled exat and anbe performed 4 times faster than lassial integer division by the bidiretional algorithm of Krandikand Jebelean. We ombine this algorithm with Karatsuba multipliation by delaying parts of thedividend updates until they an be performed by multipliation between large balaned operands.The new algorithm has (in the average) Karatsuba omplexity O(nlog 3= log 2) in the length of thequotient. An implementation using the omputer algebra system salib reveals a visible speed-upover the bidiretional algorithm at 40 words and a speed-up of 2 at about 200 words. Up to 1000words the exat division is about 20% faster than Karatsuba multipliation.The Karatsuba method for long integer multipliation [4℄ is probably the only asymptotially fastalgorithm of pratial use for integer arithmeti. Depending on the implementation, the break-even pointagainst the lassial algorithm is typially between 5 and 50 words.However, integer division with remainder does not bene�t from this algorithm. Indeed, althoughtheoretially division has the same time omplexity as multipliation (see e.g. [5℄, p. 275), a divisionalgorithm designed along the lines as explained by Knuth will be about 30 times slower than multipliation(see analysis in [6℄), whih gives a break-even point at about 15,000 words. By making use of the Krandik-Johnson multipliation [8, 7℄ whih omputes only the high-order digits, and of a squaring routine whihis twie as fast as general multipliation, one may hope to redue the gap to 15 times, whih will stillgive a break-even point of several thousands words.In [3℄ we present a tehnique whih ombines Krandik's division algorithm for omputing the high-order part of the quotient [6℄ with Karatsuba multipliation, leading to a division algorithm whih isabout two times slower than Karatsuba multipliation. The main idea of the method is to delay theupdate of part of the dividend until this an be done by multipliation of large balaned operands.The update an be delayed beause Krandik's algorithm needs only 3 word-updates below the urrentposition in the dividend.Together with Krandik, in [6℄ we develop a tehnique to ompute the quotient of an exat divisionstarting from both ends of the operands, whih saves (roughly) half of the work.The present work improves this tehnique in the following way:�Supported by Austrian Forshungsf�orderungsfonds (FWF), projet P10002-TEC.1
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