
1

Design of a Systolic Coprocessor for Rational AdditionTudor JebeleanRISC { LinzA-4040 Linz, Austria (Europe)tudor@risc.uni-linz.ac.atAbstractWe design a systolic coprocessor for the addition of signed normalized rational numbers. This isthe most complicated rational operation: it involves GCD, exact division, multiplication and addi-tion/subtraction. In particular, the implementation of GCD and exact division improve signi�cantly(2 to 4 times) previously known solutions. In contrast to the traditional approach, all operations areperformed least-signi�cant digits �rst. This allows bit-pipelining between partial operations at reducedarea-cost. An Atmel FPGA design for 8-bit operands consumes 730 cells (3,500 equivalent gates) andruns at 25 MHz (5 MHz after layout). For 32-bit operands this would be in the same timing range asthe software solutions, however, a signi�cant speed-up can be expected for longer operands becausethe linear time-complexity of the hardware algorithms.1 IntroductionThe operations with rational numbers (also referred as arbitrary precision arithmetic) are the basicbuilding block for algebraic computations [5]. In fact, in many typical algebraic calculations (e. g.solving systems of polynomial equations) the underlying arithmetic consumes sometimes more than80% of the computing time [16, 6, 2]. During the last decades, research in computer arithmeticfocused on �xed precision (oating point) computations, which are used in numerical calculations[18]. However, we are currently witnessing a fast increase of interest in exact computations in variousareas of mathematics and engineering [4, 7]. Developing coprocessors for arbitrary rational arithmeticis therefore important both from the practical and the theoretical point of view. Although parallel[systolic] algorithms for the various integer operations have been studied for a long time, only recentlysome attempts at building specialized hardware for rational arithmetic have been performed [9, 10, 17].We approach the problem of addition because it is the most complicated: it contains all the integeroperations. We consider normalized inputs (the numerator and the denominator are relatively prime).This contrasts with the approach in [14], were the inputs are not considered normalized. Also, thedesign will work for signed rational numbers (i. e. the numerator is signed and the denominator ispositive).The approach is bit serial, least-signi�cant digits �rst (LSF) and systolic. This contrasts withthe previous mentioned attempts, which work MSF, using redundant representation. LSF computa-tions need simpler algorithms, because the classical complement representation is used. This leadsto improvements both in area and in speed. We employ purely systolic algorithms, that is all thecommunications are local. Moreover, communication with the host takes place only at the lower endof the systolic array. This leads to better performance in area and speed when large circuits are im-plemented. This performance improvement is quite signi�cant especially when one uses FPGAs. Also,�Supported by Austrian Forschungsf�orderungsfonds (FWF), project P10002-PHY.

B

D

 END SG

B’

D’

 Gs Ds Bs

C

Y

X
U

A

MODE

Vs

GCD

DIV

DIV

MUL

MUL

MUL

START

4

4

4

4

FD

Vo

Gs=GCD(Bs,Ds)

Bs

Ds

 D’=Ds/Gs

B’=Bs/Gs

 Y=B’C

X=D’A

Vs=D’Bs

 ADD
 SUB

DONE

Figure 1: Structure of the systolic device.this makes the design fully scalable by simple tiling of identical components, and without modi�cationof the clock cycle. These characteristics are essential for arbitrary precision arithmetic.The next section describes the overall structure of the design: during the serial input of thedenominators the computation of their greatest common divisor (GCD) starts. After that two parallelexact division are performed, while their results are piped to three parallel multiplication units, whoseresults are piped through an add/subtract cell to the output. The numerators are serially fed-in duringmultiplication. In time, the input of the denominators overlaps with the �rst half (in average) of GCDcomputation, while the exact divisions, numerators input, multiplications, and results output overlapcompletely. The GCD array is an improvement of [13] (25% area reduction, 75% time reduction),using a special processor-clustering technique. Also, in contrast with the previous approach, the inputis serially fed-in during computation. The exact division array is a signi�cant improvement of [12](area reduction 75%). In contrast with the parallel/serial division array of [15], which has similar areaconsumption and speed, our design is parallel/parallel, taking advantage of the fact that the operandsare already in the array. The multiplication algorithm is an adaptation of the parallel/serial onepresented in [15], but we add one additional pipe for serial feeding of the parallel operand. This givesa serial/serial multiplier which has the same functionality as [1], but with a simpler design. Becausethe products are obtained is LSF bit serial form, the addition/subtraction can be performed by afull-adder with carry feedback. We use a cell which operates as adder or subtracter depending on aselection signal.2 Rational additionLet A=B and C=D be the normalized operands, and suppose one wants to compute U=V = A=B+C=D.Due to characteristics of our systolic algorithms we will consider shifted operands. Let k be the largest

integer such that 2k divides both B and C (in other words, k is the number of common trailing zerobits), and let Bs = B=2k; Ds = D=2k; Gs = GCD(Bs; Ds); Vs = V=2k be the shifted integers. Basedon [11] we consider the following algorithm:[1] Gs GCD(Bs; Ds)[2] B0 Bs=Gs; D0 Ds=Gs[3] X AD0; Y CB0[4] U X + Y[5] Vs BsD0Note that the divisions in [2] and [3] are exact, i. e. the remainder is known in advance to be null.Also, the subtraction can be performed by the same algorithm, by changing only the operation [4]. Ifthe rational inputs are signed, that means A and C are signed, than only operations [3] and [4] aresigned. The structure of the device is presented in �g. 1, and can be seen as a sandwich of systolicarrays. The �rst array computes the GCD Gs of Bs and Ds. The inputs are fed in bit-serial and LSFmanner to the lower end of the array, 4 bits at a time. These inputs are computed by a pass-throughconstant-area feeder FD, which skips the common least-signi�cant zero bits. These bits also constitutethe least signi�cant part of V . Through the wire V0, the coprocessor informs the host how long thispart is. Information about the length of the inputs is given by the host by setting the DONE signalat the last bit of each input. If the inputs have n bits, than the GCD array will need 2n steps (inaverage) to deliver the result, the �rst n steps are overlapping in time with the input operation. Theresult Gs is delivered in bit parallel manner, together with the values of Bs and Ds. The GCD arraysignals the end of the computation on the wire END. This triggers the beginning of the subsequentcomputations. Also, a bit SG is used to indicate the sign of Gs. (Due to characteristics of the GCDalgorithm, the result could appear in its negative form, and SG signals the need to complement it.)Gs; Bs and Ds are fed in parallel into the 2 division arrays DIV. In fact, the 2 arrays overlap in thehandling of Gs, which gives some area reduction. The signals END and SG are piped through thedivision arrays, and not sent globally like in [12]. The division begins to deliver the results B0; D0 rightaway, in bit-serial LSF manner, one bit at a time. The results B0; D0 of the exact divisions are thanfed in serial manner, one bit at a time, into the 3 multiplication arrays MUL. A and C are also fedin serially during this multiplications, LSF 4 bits at a time. A and C are signed, represented in theusual 2's complement form. The start of the input operation is triggered by the array using END. Themultiplication BsD0 is done in parallel/serial manner. All the products are available right away inserial LSF manner, one bit at each cycle. The denominator Vs goes directly to output, while X;Y arepiped through the adder/subtracter ADD/SUB, whose operation mode is selected by the host usingMODE.3 Greatest Common DivisorThe algorithm for the computation of the GCD is a slight modi�cation of the plus-minus Brent-Kungalgorithm [3]. Let us denote by A and B the inputs to the GCD algorithm an by a1; a0; b1; b0 theirleast-signi�cant bits. At the beginning the common trailing null bits of A;B are shifted out, then ifa0 = 0 the operands are interchanged. After that, a loop continues until B = 0:� if b0 = 0 then B is shifted one position;� otherwise (A;B) is replaced by (B; (A �B)=2) { the operation � is + i� a1 6= b1.The systolic design is di�erent from the one presented in [13] in the following respects:� Both inputs are fed-in serially. This requires a 4-bits pipeline for each input.� The initial operations (shift both, interchange) are realized in a separate unit, which has constant-area and introduces a constant delay. This simpli�es the design of the array and leads to botharea and clock-time reduction.

 INP

 SHIFT2

SHIFT1

 CHANGE

A B END

 START

 S2

 S1

 CH

 START

A BFigure 2: Structure of the feeder for the GCD array.� A novel clustering technique allows halving of the number of steps.Due to the characteristics of the GCD systolic array, each input has to be 4-bit wide. The feeder FDreceives the inputs (denoted A and B in this section) on 4 bits each and delivers the results also on 4bits each. The structure of the feeder is presented in �g. 2. The unit INP performs an AND betweenthe inverted DONE and each input bit. Therefore, INP will continue to produce null bits after thehost signals end of input through DONE. An OR of the 8 wires generates the signal START, whichsignals the beginning of computation. The common least signi�cant null bits of A and B are ignored.Also, a negated OR of a0; a1; b0; b1 generates the signal SH2, which commands the next unit. The unitSHIFT2 shifts the operands by 2 bits if SH2 is 1. First each signal is delayed through a 1-clock latch,then 8 multiplexors choose the desired values. The signal SH1 is computed as negated OR of a0 andb0 and drives the 1-bit shifter SHIFT1, which is also composed of 8 latches and 8 multiplexors. FinallyCHANGE interchanges A and B if the signal CH (inverted a0) is 1. Note that the delay through thefeeder is constant (3 clocks), while the area (experimentally 109 Atmel cells) is also independent ofthe length of the input.The systolic array performs the loop of the GCD algorithm. This is simpler than the operationsperformed by the previous version of the systolic array [13], however the basic principles remain thesame:� the numbers A;B are represented in 2's complement;� the rightmost cell decides upon the next instruction to be performed, by examining b0; a1; b1;� the instruction signal generated by cell 0 is pipelined right-to-left, together with the carry-borrowproduced at each plus-minus operation.A space-time diagram of the atomic operations is presented in �g. 3. Due to the bidirectional com-munication, a loss of e�ciency occurs: each processor can be active only the second step. In [13] wepresented a space-clustering technique for improving the area consumption, by preserving the averagerunning time (number of steps). In the present design we use a space-and-time clustering compacting2 cells and two steps in one processor-step, as shown in �g. 3 (grey cells are active). The clusteringtechnique is similar to the one presented in [8]. The structure of the new processor is shown in �g.4. A signal LOAD (initially null) is taken from START of the feeder and regulates the loading of theinitial values of A;B through the multiplexors M. The initial values are fed using a 4-bit pipeline foreach operand, which features a set of latches each 2 processors (4 cells). The latches L (�g.4) regulate

Cells

Time

Figure 3: Time-space clustering in the GCD array.
F F

LM

L

L

L

L

A,B

CARRY

A,B

A,B
A,B

M

LOAD

A,B A,B

INSTRUCTION

A,B0
1

0
1Figure 4: Double-cell processor in the GCD array.

the data-ow in the array. In particular, the di�erent positions of the A,B latches in the left and in theright cell ensure correct operation according to the clustering shown in �g. 3. The instruction signalhas two bits (SH for shift B and PM for plus or minus) and selects the operation to be performed bythe functional units F. The functional unit performs the shift and the plus-minus operation using afull adder, an XOR, an AND and a multiplexor.Additionally, the GCD array uses two tags TA, TB in order to keep track of the lengths of theoperands (signi�cant bits are tagged), and a bit SA which pipes rightward the sign of operand A. Thestructure of the double cell processing these signals is similar to the one presented in �g. 4, but thefunctional units are di�erent. Each unit is composed of an OR gate and 3 multiplexors.In the Atmel FPGA implementation, a GCD array for 8-bit inputs consumes 224 cells (1,129equivalent gates) and has a clock cycle of 39.6 ns. Together with the feeder it takes 333 cells (1,598.5equivalent gates). This is 72% of the area of the design in [13] and 62% of the clock time. Moreover,the present array needs two times less steps. After layout, the cell count is 953 (60% of the old design)and the clock time is 205 ns (47%), hence the new array runs 4 times faster.4 Exact divisionBy exact division we understand the division without remainder, i. e. when it is known in advancethat the remainder is null. We present here an improvement of the algorithm and implementation in[12]. The basic idea of exact division is the following: Let A;G be such that G j A and G is odd.We want to �nd the exact quotient X = A=G. Let a0; g0; x0 be the least-signi�cant binary digits ofA;G;X. Then from a0 = x0 � g0 and g0 = 1 one gets x0 = a0. Now if we denote by X 0 the shifted X:X = x0 + 2 �X 0; then one has: (A �G � x0)=2 = G �X 0; hence the next digit of X can be computedby applying the same scheme to shifted (A � G � x0) and G. The data-ow in the systolic algorithmis shown in �g.5 and the structure of the systolic processors is shown in �g. 6. G1 and G0 are twosuccessive bits of G received from the GCD array. They are inverted by the XOR gates if the signof G is negative (SG produced by the GCD array). X is the current bit of the quotient, which iscomputed in the rightmost cell. Two successive values of X (separated by the latch L) are multipliedwith the two successive bits of G and then subtracted from the current bit of As in the subtractersSUB (equipped with carry feed-back). A1 and A0 are two successive bits of As as received from theGCD array. These initial values are loaded into the division array through the two multiplexors asdirected by the signal START (initially null). This signal is triggered by the output signal END ofthe GCD array. The systolic array is similar to the serial-parallel division design described by [15],however our design is obtained in a di�erent manner, receives both inputs in parallel, and treats alsothe sign of the divisor Gs. Implemented on Atmel FPGA, an 8-bit array for 2 divisions consumes 160cells (534 equivalent gates). This is 24% of the array presented in [12] (535 cells, 2,183.5 equivalentgates).5 Experiments and conclusionsWe do not describe here the logic design of the multiplication array, which is the one presented by[15], enhanced with a 4-bit pipeline for one of the operands. This gives a serial-serial multiplier withthe same functionality as Atrubin's design [1], but with a simpler structure. The implementation ofone array for 8-bit operands consumes 82 cells (273 equivalent gates). Three such arrays are neededin the arithmetic unit - the last one, however, does not need the pipeline because the input is takenin parallel from the GCD array.The area consumption of the components in an Atmel implementation for 8-bit operands is asfollows: feeder: 97 Atmel cells, GCD: 224 cells, divider: 160 cells, multiplier: 82 cells, and full rationaladder: 729 cells (3,428 equivalent gates). The clock-time is 40 ns (like the GCD array), hence a speedof 25 MHz is possible (before layout). Automatic layout was not successful on a 6005 chip, but mostprobably the new 6010 chip will be able to accommodate an 8-bit implementation. (Due to the fully

a1; g1a0; g0a3; g3a2; g2 ?? ??? ?? ?
x0x0 x1x1 x2x3

g0g0g0g0
g1g1g1g1

g2g2g3g3
&%'$&%'$&%'$&%'$&%'$&%'$

@@@@@R@@@@@Ra2a3
�����	 �����	�����	 �����	�����	 �����	

x0x0 x1x1 x2x3
x0=a0a1�g1x0x1=a1a2�g2x0 a2�g1x1x2=a2a3�g3x0a3�g2x1 a3�g1x2x3=a3Figure 5: Data ow in systolic exact division (borrows not shown).

 AND AND

 XOR XOR

 0
 1

 0
 1

 L

 L

 L SUB SUB

 L L

 L

G1 G0

SG

X

A1 A0

START

A A

Figure 6: Systolic processor for exact division.systolic characteristics of the algorithms, longer operands can be treated by simply tiling several chips.)A slowdown of 4 to 5 is to be expected after layout, hence a speed of 5 to 6 MHz. Since 3n steps arenecessary (in average) for adding n-bit operands, 32-bit operands would need about 100 steps by 200ns, that is 20 �s. An optimized C program on a DECstation 5000/2401 solves the problem in 14.3�s, hence the timings are in the same range. However, for longer operands the speed-up will increaselinearly, because the time complexity of the systolic array is linear, while the timing of the softwarealgorithms increases quadratically.References[1] A. J. Atrubin. A one{dimensional iterative multiplier. IEEE Trans. on Computers, C-14:394{399, 1965.[2] G. Attardi and T. Flagella. Memory management in PoSSo solver. Journal of Symbolic Computation,1994. To appear.[3] R. P. Brent and H. T. Kung. A systolic algorithm for integer GCD computation. In K. Hwang, editor,Procs. of the 7th Symp. on Computer Arithmetic, pages 118{125. IEEE Computer Society, June 1985.[4] M. Bronstein, editor. ISSAC'93: International Symposium on Symbolic and Algebraic Computation, Kiev,Ukraine, July 1993. ACM Press.[5] B. Buchberger, G. E. Collins, and R. G. K. Loos (eds). Computer Algebra, Symbolic and AlgebraicComputation. Springer Verlag, Wien-New York, 1982.[6] B. Buchberger and T. Jebelean. Parallel rational arithmetic for Computer Algebra Systems: Motivatingexperiments. In 3rd Scienti�c Workshop of the Austrian Center for Parallel Computation, Weinberg,Austria, March 1992. Report ACPC/TR 93-3, February 1993.1The speed of single precision integer arithmetic is: addition: 0.026 �s, multiplication: 0.353 �s, division: 0.905 �s.

[7] A. M. Cohen and L. J. van Gastel, editors. SCAFI'92: Studies in Computer Algebra for Industry II,Amsterdam, 1992. Report Series of the Computer Algebra Netherlands Expertise Center.[8] Sh. Even and A. Litman. On the capabilities of systolic systems. Math. Sys. Theory, 27:3{28, 1994.[9] A. Guyot, Y. Herreros, and J.-M. Muller. JANUS, an on-line multiplier/divider for manipulating largenumbers. In M. J. Irwin and R. Stefanelli, editors, ARITH-8: 8th IEEE Symposium on Computer Arith-metic, pages 106{111, Como, Italy, May 1987. IEEE Computer Society Press.[10] A. Guyot and Y. Kusumaputri. OCAPI: A prototype for high precision arithmetic. In A. Halaas andP. B. Denyer, editors, VLSI'91, pages 11{18. IFIP, North Holland, 1991.[11] P. Henrici. A subroutine for computations with rational numbers. Journal of the ACM, 3:6{9, 1956.[12] T. Jebelean. Systolic normalization of rational numbers. In L. Dadda and B. Wah, editors, ASAP'93:International Conference on Application{Speci�c Array Processors, pages 502{513, Venice, Italy, October1993. IEEE Computer Society Press.[13] T. Jebelean. Designing systolic arrays for integer GCD computation. In P. Capello, R. M. Owens, E. E.Swartzlander, and B. W. Wah, editors, ASAP '94, San Francisco, August, pages 295{301. IEEE ComputerSociety Press, 1994.[14] T. Jebelean. Rational arithmetic using FPGA. In W. Luk and W. Moore, editors, More FPGAs, pages262{273. Abingdon EE&CS Books, Oxford, 1994. Proceedings of FPLA'93: International Workshop onField Programmable Logic and Applications, Oxford, UK, September 1993.[15] P. Kornerup. A systolic, linear-array multiplier for a class of right-shift algorithms. IEEE Trans. onComputers, 43:892{898, 1994.[16] W. Neun and H. Melenk. Very large Gr�obner basis calculations. In Zippel, editor, Computer algebra andparallelism. Proceedings of the second International Workshop on Parallel Algebraic Computation, pages89{100, Ithaca, May 1990. LNCS 584, Springer Verlag.[17] C. Riem, J. K�onig, and L. Thiele. A Case Study in Algorithm{Architecture Codesign: Hardware Acceler-ator for Long Integer Arithmetic. In Proc 3rd International Workshop on Algorithms and Parallel VLSIArchitecures, Katholieke Universiteit Leuven, Belgium, 1994.[18] E. E. Swartzlander, editor. Computer Arithmetic, volume 2. IEEE Computer Society Press, 1990.

