
Integer and Rational Arithmetic on MasParTudor Jebelean?Research Institute for Symbolic ComputationA-4232 Hagenberg, Austria (Europe)tudor@risc.uni-linz.ac.atAbstract. The speed of integer and rational arithmetic increases signif-icantly by systolic implementation on a SIMD architecture. For multipli-cation of integers one obtains linear speed-up (up to 29 times), using aserial{parallel scheme. A two-dimensional algorithm for multiplication ofpolynomials gives half-linear speed-up (up to 383 times). We also imple-ment multiprecision rational arithmetic using known systolic algorithmsfor addition and multiplication, as well as recent algorithms for exact di-vision and GCD computation. All algorithms work in \least-signi�cantdigits �rst" pipelined manner, hence they can be well aggregated to-gether. The practical experiments show that the timings depend lin-early on the input length, demonstrating the e�ectiveness of the systolicparadigm for multiple precision arithmetic.1 IntroductionSystolic parallelization of multiprecision arithmetic in the \most-signi�cant dig-its �rst" (MSF) pipelined manner was considered by [13] and other authors (see[12], chapter 3), using the signed-digit redundant representation.Our approach is di�erent: we use \least-signi�cant digits �rst" (LSF) al-gorithms, because this allows pipelined aggregation of the various operations.Also, these algorithms use standard representation of multiprecision integers inan arbitrary radix (typically a power of 2), which makes them suitable for im-plementation on multiprocessor architectures.SIMD parallelization of computer algebra algorithms did not receive muchattention in the literature. [15] reports a 45 times speed{up of Gr�obner Basiscomputations by parallelizing multiprecision algorithms on the SIMD like Con-vex vector processor, but most of the speed-up is due to some improvements inlist processing operations and to the use of 64-bit arithmetic. Univariate polyno-mial multiplication by parallelizing both the level of coe�cient operations andbinary-digit operations was considered by [1] on the ICL DAP computer (SIMDarchitecture).The MasPar computer { shortly presented in Section 2 { is particularly suit-able for the implementation of systolic algorithms. Of paramount importance for? Supported by the Austrian Fonds zur F�orderung der wissenschaftlichen Forschung,project P10002 MAT

our application are: the fast communication between adjacent processors, andthe high e�ciency of global broadcasting.In Sections 3 and 4 we describe the implementation of long integer and ofunivariate integral polynomial multiplication. We use multiprecision variants ofserial / parallel multipliers which can be easily derived from the \school method".Apparently these algorithms were the �rst to be considered for hardware multi-plication { see [2]. In both algorithms, one of the operands is present in the arrayat the beginning of computation, while the elements of the other one are broad-casted to the parallel processors, one at each step. The �rst algorithm pipelinesthe result out via the �rst processor, while the second algorithm leaves the re-sult in the array. The second algorithm is suitable for embedding into polynomialmultiplication scheme, yielding an algorithm with two{level systolic parallelism,which maps naturally onto the two{dimensional architecture of MasPar.For multiplication of multiprecision integers we obtain almost linear speed-upover the classical sequential algorithm (29 times for 30 digit integers, e�ciency95%). The two-dimensional algorithm for multiplication of univariate integralpolynomials gives almost half-linear speed-up (383 times for polynomials of de-gree 29 with multiprecision coe�cients of 15 digits, e�ciency 43%).In Sections 5 { 9 we present the systolic implementation of a rational oper-ation which is widely used in typical algebraic computations { e. g. in Gr�obnerBases [4]. Besides multiplication, one also uses addition, division, and GCDcomputation. Theoretically, addition in standard representation cannot be im-proved by systolic parallelization, but practically it runs in constant time, be-cause the carry chain seldom exceeds two digits. Since division is with nullremainder, one can use the exact division algorithm recently introduced in [7] -some systolic parallelizations of exact division are described in [8] - we choosethe one which is most suitable in the present context. The most complicatedoperation is the computation of the GCD, which is implemented using thesystolic parallelization [9] of the recently developed algorithm from [6, 14].The most important conclusion of the practical experiments is that one ob-tains linear timings - that is, running time depends linearly on the length of theinput numbers. This demonstrates the e�ectiveness of the systolic paradigm forthe implementation of long integer and long rational arithmetic.2 The MasPar ComputerWe present here only those features which are relevant for our approach.MasPar is a SIMD distributed memory machine, with 1024 Processing Ele-ments (PE's), arranged in a 32 by 32 mesh (torus). The PE's are driven by asequential Array Control Unit (ACU). The device can be programmed in thelanguage C, with some special extensions for handling MasPar parallelism.Data: The ACU and each PE have their own internal memory for data. InC language, one has to use plural to declare the variables which are allocatedon the parallel PE's. A plural variable will have one instance on each PE,

possibly containing di�erent values. The variables which are not plural arecalled singular and are allocated on ACU.Program ow: The operations involving only singular variables are exe-cuted sequentially on the ACU. The operations involving plural variables areexecuted in parallel on the PE's. All PE's execute the same instructions syn-chronously. However, at certain moments some of the PE's may be \masked"(by conditional instructions), and then they execute nothing.Data communication between ACU and PE's: The ACU accesses allthe PE's in parallel. Hence, data can be broadcasted to all the PE's in one step.For instance, if a is singular and b is plural, then the assignment \b = a;" willsend the value of a to all active PE's. The reverse operation is not possible, butone can use \a = globalor(b);", which performs a bitwise logical OR on allb's in the active PE's. Also, a plural variable (say b) on a particular PE can beaccessed using proc[i].b (linear addressing, 0 � i � 1023) or proc[y][x].b(2D addressing, 0 � x; y � 31). The proc construct may be used in either leftor right hand side of assignments, thus yielding the means to store/load valuesto/from particular PE's.Data communication between PE's: Data may be moved between ad-jacent PE's by using the xnet construct. For instance, if b and c are pluralvariables, then \xnetW[1].b = c;" means \store the value of c into b of the leftneighbor". This is also executed in parallel on all active PE's.3 Long Integer MultiplicationThe inputsA;B and the output C = A�B are multiprecision integers representedas lists of positive digits in radix �:A = a0 + a1 � � + : : :+ an�1 � �n�1; B = b0 + b1 � � + : : :+ bm�1 � �m�1:C = c0 + c1 � � + : : :+ cn+m�1 � �n+m�1:The classical algorithm for multiplication consists of a double loop whoseinnermost instruction is:(carry; ci+j) ci+j + bj � ai + carry:This algorithm is inherently sequential, because each step uses the carry pro-duced by the previous step. We change this by using a list Y = (y0; y1; : : : ; yn+m�1)to hold the carries produced at each step. This list has as many elements as Chas. The computation then proceeds in two stages:{ Stage 1: The additions and the multiplications are performed and the carriesare produced. Since the outermost loop (over A) is performed sequentially,the carries produced in one step may be used in the following step.{ Stage 2: The carries are absorbed into C, by adding each yk to ck+1. Theseadditions may produce new carries, which are again stored in Y list, and theabsorption stage is repeated until all the carries become zero.

This scheme allows the parallelization of the inner loop (over B), leading tothe systolic algorithm shown in Fig. 1. The local variables on each processor aredenoted by B = (b0; b1; : : : ; bm), C = (c0; c1; : : : ; cm), Y = (y0; y1; : : : ; ym). Thevector A is not stored in the processors. Rather, at each iteration of the mainloop, one element of A is send to all the processors for the computation in linef 6g. During Stage 1, the m processors act as a window which moves along thevector C, one element at a time. In other words, C is piped through the stringof m processors. During Stage 2, the window is �xed on the last m elements ofC. In practice we use an m + 1th processor whose bm; cm, and ym are zero allthe time. This boundary processor does not participate in the computation, butits presence avoids boundary tests.f 0g C IntSysMul:1(A;B) [Systolic integer multiplication, version 1]f 1g B;C; Y (0; : : : ; 0) [m+ 1 positions]f 2g for j = 0; 1; : : : ; m� 1 do [load B sequentially]f 3g bj bjf 4g for i = 0; 1; : : : ; n� 1 do fStage 1: add and multiply]f 5g for j = 0; 1; : : : ;m� 1 in parallel dof 6g (yj; cj) cj + bj � ai + yj [compute]f 7g ci c0 [extract next digit of C]f 8g for j = 0; 1; : : : ;m� 1 in parallel dof 9g cj cj+1 [shift C left]f10g while globalor(Y) do [Stage 2: absorb carries]f11g for j = 0; 1; : : : ;m� 1 in parallel dof12] (yj+1; cj) cj + yjf13g y0 0f14g for j = 0; 1; : : : ; m� 1 do [extract rest of C sequentially]f15g cn+j cjFig. 1. Systolic multiprecision multiplication, version 1.The parallel loops f5g, f8g, f11g and the initialization f1g require constanttime. The other loops are f2g: n steps, f4g: n steps, f10g: at most m steps,and f14g: m steps. Hence Tsystolic = O(n +m): For balanced{length operands:Tsystolic = O(n):We implemented the algorithm IntSysMul.1 on MasPar MP1, using only the�rst row of 32 processors, and the classic algorithm, using only one processor.Fig. 2 shows the timings in milliseconds for the two algorithms (systolic timingsare scaled by 10). The speed{up is linear w.r.t. input length and ranges between4 (at 5 digits) and 29 (at 30 digits). The e�ciency ranges between 81% and 96%.Second version: If C is to be used in subsequent computations (as it isthe case in polynomial multiplication), then it is useful to leave it in the array,

020406080
100120140

5 10 15 20 25 30milliseconds Length of operands in radix 232
classic 3

3 3 3 3 3 310 * systolic +
+ + + + + +Fig. 2. Comparative timings for multiprecision multiplication.instead of pipelining/extracting it. Using n+m+ 1 processors, C can be storedin C, and then B and Y must be shifted rightward one position at each step.However, most of the time onlym of the n+m+1 processors do useful work. Thisresults in a lower e�ciency of parallelism (1/2 for balanced-length operands).4 Polynomial MultiplicationThe inputs A;B and the output C = A � B are integral univariate polynomialsrepresented as lists of multiprecision integers:A = A0 +A1 � x+ : : :+AN�1 � xN�1; B = B0 +B1 � x+ : : :+BM�1 � xM�1:C = C0 + C1 � x+ : : :+ CN+M�2 � xN+M�2:The innermost loop of the classical algorithmperforms the operation C+A�Bover long integers. In this case there is no problem in parallelizing the inner loopof the algorithm, using M computing units. As in the case of IntSysMul.1(�g. 1), C is piped through the string of these M computing units. However,each of these computing units must be able to compute C + B � A on longintegers. This is exactly what is done by the second version of the integer systolicalgorithm, if the initialization of C is removed. Therefore, one can use a row ofprocessors for each of the aboveM computing units. Overall, one needs a matrixof (M +1) � (n+m+2) processors, where n;m are the maximum lengths of thecoe�cients of A;B.

The local variables of each processor are denoted by B = (bJ;j), B0 = (b0J;j),C = (cJ;j), Y = (yJ;j). B0 contains the coe�cients of B, shifted rightward asrequired by the integer algorithm, and gets from B the non{shifted values at thebeginning of each main cycle. The (M + 1)th row and the (n+m+ 2)th columnof processors ensure the boundary conditions and do not participate in the com-putation. The coe�cients of A are not stored in the parallel processors. Rather,they are send to all the processors, one digit at each step, for the computationin line f 9g (see Fig.3).f 0g C PolySysMul(A;B) [Systolic polynomial multiplication]f 1g C;B;Y (0; : : : ; 0) [in parallel]f 2g for (J; j) = (0; 0); (0; 1); : : : ; (M � 1;m� 1) do [load B sequentially]f 3g bJ;j bJ;jf 4g for I = 0; 1; : : : ;N � 1 do [scan coe�cients of A]f 5g for J = 0; 1; : : : ;M � 1 in parallel do [CI+J CI+J + BJ �AI]f 6g b0J;j bJ;j [restore B]f 7g for i = 0; 1; : : : ; n� 1 do [Stage 1: add and multiply]f 8g for j = 0; 1; : : : ; n+m in parallel dof 9g (yJ;j+1; cJ;j) cJ;j + b0J;j � aI;i + yJ;j [compute, shift Y]f10g b0J;j+1 b0J;j [shift B]f11g while globalor(Y) do [Stage 2: absorb carries]f12g for j = 0; 1; : : : ; n+m in parallel dof13g (yJ;j+1; cJ;j) cJ;j + yJ;jf14g for j = 0; 1; : : : ; n+m do [extract CI sequentially]f15g cI;j c0;jf16g for (J; j) = (0; 0); (0; 1); : : : ; (M � 1; m� 1) in parallel dof17g cJ;j cJ+1;j [shift C upwards]f16g for J = 0; 1; : : : ;M � 1 do [extract rest of C sequentially]f17g for j = 0; 1; : : : ; n+m do [extract CN+J sequentially]f18g cN+J;j cJ;jFig. 3. Systolic polynomial multiplication.Time complexity: We do not count the parallel loops f5g, f8g, f12g andf16g. The loop f2g is performedM �m times, the loop f4g (N times) has severalinner loops: f7g n times, f11g at most m times, and f14g n +m times, henceN � (n+m) is dominating. Finally, the loop f16g is repeated M � (n+m) times.All in all: Tsystolic = O((N + M) � (n + m)): For balanced{length operands:Tsystolic = O(N � n):We implemented the algorithm PolySysMul on MasPar MP1, using the ma-trix of 32 by 32 processors, and the classical algorithm, using only one processor.The experiments used polynomials with 5 to 30 coe�cients, whose size ranges

between 5 and 15 words. The timings of the classical algorithm show the char-acteristic parabola, and grow up to 32 seconds. Figure 4 shows the speed{up {the maximum is 383. The e�ciency ranges between 38% and 43%, approachingthe 50% theoretical limit.
050100150200250300350400
5 10 15 20 25 30Size of polynomials (Number of processors is 2 * coe�. len. * poly. size)

15 digits 3
3 3 3 3 3 310 digits +
+ + + + + +5 digits 2
2 2 2 2 2 2Fig. 4. Speed-up of systolic polynomial multiplication.5 Rational ArithmeticThe operation which we implement is rational reduction, that is, given rationalnumbers AB ; CD ; XY ; �nd EF = AB � XY � CD ; where E=F is normalized. Thisoperation is heavily used, for instance, in Gr�obner bases computation [4], forinter-reduction of polynomials. All the basic operations with long integers areinvolved in this reduction: E0 = A � Y �D � B �X �C; F 0 = B � Y �D; G =GCD(E0; F 0); E = E0=G; F = F 0=G; where the last two divisions are exactdivisions. Note that we do not use here Henrici's approach [5], which gives poorresults in the context of systolic parallelization.The input/output is intermingled with the computations as follows: theoperands are loaded into the array during multiplication, exact division outputsthe result during computation.

6 Multiplication and AdditionEachmultiplication is performed according to the second variant of the systolicalgorithm presented in Section 3. This scheme requires one operand to be presentin the array, while the other is loaded during multiplication. Therefore, �rst CandD are sequentially loaded into the array (this is the only I/O operation whichdoes not overlap with actual computation). Subsequently, Y �D and X �C arecomputed, then A � Y �D, B � Y �D and B �X �C.Addition (subtraction) is performed using complement representation. Theoperands are represented by �lling-up the array with additional words (sign-words) which equal zero for a positive operand and 232�1 for a negative operand.The actual addition is performed in digit-parallel fashion, using the ripple-carryscheme. This scheme has a linear-time worst-case complexity, but, however, theprobability of the worst-case situation is extremely low when using high-radixdigits. In fact, in our experiments we never encountered a situation when thecarry propagation needed more than 2 steps.The only situation when the carry could systematically ripple along manywords is the case of subtraction when the result is positive. In order to limitthe number of steps in this case, we use a mask, which indicates the signi�cantwords of the result.The experimentally measured running time is in fact constant and takes lessthan 0.1% of the entire rational reduction operation.7 Greatest Common DivisorGCD computation is the most complicated and also the most time-consumingoperation. Also, parallelization of the classical Euclidean algorithm { or Lehmerimproved scheme [10] { is di�cult, because of the carry propagation. An algo-rithm in which the decisions are taken using the least-signi�cant digits of theoperands is the binary algorithm of [11], which was adapted for systolic compu-tations by [3] { the so called PlusMinus algorithm. These algorithms, however,work at binary level, hence they are less suitable for implementation on multi-processor machines working at word level.Therefore, we parallelize here the generalized binary algorithm from [6], whichworks least-signi�cant digits �rst, and also at word level. This algorithm needssome further adaptations in order to be suitable for systolic parallelization.Namely, the problem is that the generalized binary algorithm �nds an approxi-mation G0 of the true G = GCD(A;B), which in the sequential version is cor-rected by computing G = GCD(A;B;G0) = GCD(A mod G0; B mod G0; G0):These computations are di�cult to parallelize systolically, hence we want toavoid them. One way would be to replace the division with remainder by exactdivision, whose result is also suitable for �nding the true GCD, and then con-tinue the computation using the systolic PlusMinus algorithm or an improvedversion for high-radix computation. We do not use this approach here, but anexact version of the generalized binary algorithm as described in [9]. The onlycause for this is the simplicity of the implementation.

f 0g G IntSysGCD(A;B) [C GCD(A;B)]f 1g (A;B) ShiftTwo(A;B) [shift common zeroes]f 2g while B 6= 0 [main loop]f 3g A ShiftOne(A) [shift A]f 4g B ShiftOne(B) [shift B]f 5g (x; y; x0; y0; s) Cofactors(a0; b0) [compute cofactors]f 6g A0 LinComb(x;A; s; y;B) [�rst linear combination]f 7g B0 LinComb(x0;A; 1� s; y0;B) [second linear combination]f 8g if A0 6= 0 [replace]f 9g then (A;B) (A0;B0)f10g else (A;B) (B0;A0)f11g [end of main loop: B is 0, A is the GCD]f12g G ComplIfNeg(C) [complement G if negative]Fig. 5. Systolic multiprecision GCD computation.The outline of the algorithm is presented in Fig. 5. The routine ShiftOne(X)shifts the least-signi�cant bits out of the nonzero X. The routine ShiftTwo(X;Y)shifts out the common least-signi�cant bits from its arguments (of which at leastone must be nonzero). Both routines operate in (almost) constant time, becausethe probability that many least-signi�cant words are null is very small.The routine LinComb(x;X; s; y; Y) computes the linear combination x �X �y � Y (parameter s indicates + or �). The routine works for negative operandsalso, using complement representation. A mask is used in order to indicate therange of correct values.In order to avoid rippling the carries at each step, X;Y and the result of thelinear combination are represented by two arrays of values, one array containingthe actual digits, and one containing the carries which are not propagated yet.During each linear combination, the carries are propagated only 1 step, afterwhich each carry becomes at most 1 (this decreases the cost of the next multi-plication). Note that the least-signi�cant digit of the result (needed for the nextreduction step) is always correct.After the main loop, G is complemented if negative. In fact, G should bealso shifted with the same number of binary positions which were shifted outfrom the inputs at the beginning. However, in the actual implementation weperform ShiftTwo(...) before calling the GCD routine, thus the normalizationis still correctly done. Indeed, the GCD computation is needed for the nor-malization of the rational fraction E0=F 0. We shift out of E0; F 0 the commontrailing binary zeroes, obtaining E"; F". Then the GCD algorithm is used to�nd G" = GCD(E"; F"), and then E = E"=G" and F = F"=G" are found byexact division. Note that G" is always odd, which suits well the needs of theexact division algorithm.

The main reduction scheme works only if the operands are multiprecision. Ifthe GCD is single precision, then at some moment both operands A;B mightalso become single precision. From this moment the [single precision] Euclideanalgorithm is used for �nding the GCD.8 Exact DivisionThe �nal stage of computation consists in performing the exact divisions by theGCD. As explained in the previous section, the divisor is already odd, hencethe exact division algorithm introduced in [7] can be applied without any pre-processing. In [8] several systolic variants of this algorithm are described. Wechoose for implementation the version which suits well the particular character-istics of this application { see Fig. 6. Namely, the algorithm is simpler becauseglobal communication can be used and also the digits of the result are pushedout during the computation.f1g B IntSysEDIV(C;A) [B C=A]f2g a0 ModInv(a) [�nd a0�1 mod 232]f3g while C 6= 0 [main loop]f4g b (c0 � a0) mod 232 [�nd next digit of the quotient . . .]f5g Bnext b [. . . and push it out]f6g C LinComb(1; C; 1; a0;A) [C C � a0 � A]f7g for i = 0; 1; : : : in parallel do [shift C left]f8g ci ci+1f9g [end of main loop]Fig. 6. Systolic multiprecision exact division.The vector B in this algorithm is external to the processor array { it rep-resents the output of the algorithm. The function ModInv(a) is based on therecursion developed in [7], hence we avoid the (expensive) extended Euclideanalgorithm. A simpli�ed version of the function LinComb from the GCD algorithmis used for performing the operation C � a0 �A. Again the carries are not prop-agated at each step, because only the correct value of the least-signi�cant digitof C is needed for continuing the computation.9 Experimental ResultsThe algorithms were implemented on a computer MasPar MP-1 having an arrayof 32 by 32 processors. The programs handle this two-dimensional array as an

one-dimensional array of 1024 processors, virtually connecting the rows at theiredges.A straightforward calculation of the time complexity of all the algorithmswill be similar to the one for multiplication (see Sect. 3) and will reveal linearcomplexity. For practical purposes, however, direct timing of the algorithms iseven more relevant. We timed the execution for random inputs having lengthup to 100 32-bit words. That means GCD is computed for operands having(roughly) 300 words, while its output is usually small (single precision). Thetimings are presented in �g. 7. The times consumed for addition and ShiftTwobefore GCD computation are 0.70 and 0.35 milliseconds, respectively, and arenot shown in the �gure.
020040060080010001200140016001800
0 10 20 30 40 50 60 70 80 90 100Length of initial operands (32-bit words)

Timings in milliseconds Multiplication 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

GCD +
+ + + + + + + + + + + + + + + + + + + +Exact division 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2Total �� � � � � � � � � � � � � � � � � � � �
Fig. 7. Timings of the rational reduction and its components.The most important characteristic of the timing is the linear dependence ofthe lengths of the input. This shows that the systolic model can be e�ectivelyused on MasPar architecture for implementing long integer arithmetic.Further work includes improving the e�ciency of the implementation, { es-pecially that of the GCD computation, which takes most of the time { andembedding the rational reduction algorithm in higher-level algebraic computa-tions.References1. R. Beardsworth. On the application of array processors to symbol manipulation.

In SYMSAC'81, 1981.2. A. D. Booth. A signed binary multiplication technique. Q. J. Mech. Appl. Math.,4:236{240, 1951.3. R. P. Brent and H. T. Kung. A systolic algorithm for integer GCD computation.In K. Hwang, editor, Procs. of the 7th Symp. on Computer Arithmetic, pages 118{125. IEEE Computer Society, June 1985.4. B. Buchberger. Gr�obner Bases: An Algorithmic Method in Polynomial Ideal The-ory. In Bose and Reidel, editors, Recent trends in Multidimensional Systems, pages184{232, Dordrecht-Boston-Lancaster, 1985. D. Reidel Publishing Company.5. P. Henrici. A subroutine for computations with rational numbers. Journal of theACM, 3:6{9, 1956.6. T. Jebelean. A generalization of the binary GCD algorithm. In M. Bronstein, edi-tor, ISSAC'93: International Symposium on Symbolic and Algebraic Computation,pages 111{116, Kiev, Ukraine, July 1993. ACM Press.7. T. Jebelean. An algorithm for exact division. Journal of Symbolic Computation,15(2):169{180, February 1993.8. T. Jebelean. Systolic Algorithms for Exact Division. In Workshop on Fine Grainand Massive Parallelism, pages 40{50, Dresden, Germany, April 1993. Publishedin Mitteilngen{Gesellschaft f�ur Informatik e. V. Parallel Algorithmen und Rechn-erstrukturen, Nr. 12, July 1993.9. T. Jebelean. Systolic algorithms for long integer GCD computation. In J. VolkertB. Buchberger, editor, CONPAR 94 - VAPP VI, Linz, Austria, September, pages241{252. Springer Verlag LNCS 854, 1994.10. D. H. Lehmer. Euclid's algorithm for large numbers. Am. Math. Mon., 45:227{233,1938.11. J. Stein. Computational problems associated with Racah algebra. J. Comp. Phys.,1:397{405, 1967.12. E. E. Swartzlander, editor. Computer Arithmetic, volume 2. IEEE Computer So-ciety Press, 1990.13. K. S. Trivedi and M. D. Ercegovac. On-line algorithms for division and multipli-cation. IEEE Trans. on Computers, C-26(7):681{687, 1977.14. K. Weber. The accelerated integer GCD algorithm. ACM Trans. on Math. Soft-ware, 21(1):111{122, March 1995.15. D. Weeks. Adaptation of SAC-1 algorithms for an SIMD machine. In J. Della Doraand J. Fitch, editors, Computer Algebra and Parallelism, pages 167{177. AcademicPress, 1989.
This article was processed using the LATEX macro package with LLNCS style

